HEREBEDRAGONS: THE UNEXPLORED CONTINENTS OF THE CMSSM

Jay Wacker (SLAC)

with Tim Cohen

arXiv:13XX.soon

PCTS After the Higgs Workshop April 25, 2013 Disclaimer

This is not a talk on the Higgs boson,

but

the Higgs boson mass plays a central role.

Disclaimer

This is not a talk on the Higgs boson,

but

the Higgs boson mass plays a central role.

The 8 TeV LHC just began to exploring CMSSM Need 13 TeV (and beyond)

Outline

- I) Motivation
- II) CMSSM Cartography
- III) Circumnavigating the CMSSM
- IV) Conclusions

MOTIVATION

4/36

The MSSM in the Era of Higgs Discovery

- A SM-like Higgs has been discovered at 125 GeV.
 - Profound implications for spectrum

ATLAS [arXiv:1207.7214] CMS [arXiv:1207.7235]

$$m_{h^0}^2 \simeq m_{Z^0}^2 \cos^2 2\beta + \frac{3g^2 m_t^4}{8\pi^2 m_{W^\pm}^2} \left(\log \frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}_1} m_{\tilde{t}_2}} \left(1 - \frac{A_t^2}{12m_{\tilde{t}_1} m_{\tilde{t}_2}} \right) \right)$$
$$m_{h^{0'}} - m_{h^0} \simeq \frac{3g^2 m_t^4}{16\pi^2 m_{W^\pm}^2 m_{h^0}} \log \frac{m_{\tilde{t}_1'} m_{\tilde{t}_2'}}{m_{\tilde{t}_1} m_{\tilde{t}_2}} \implies m_{\tilde{t}_1'} m_{\tilde{t}_2'} \simeq m_{\tilde{t}_1} m_{\tilde{t}_2} \ 2^{\frac{\Delta m_h}{5.6 \text{ GeV}}}$$

- This measurement is "consistent" with MSSM.
 - Stops 500 GeV to 100 TeV 4x heavier than pre-Higgs
- The motivation for weak-scale superpartners remains:
 - Solves the hierarchy problem;
 - Explains the dark matter;
 - Predicts gauge coupling unification.

The MSSM in the Era of Higgs Discovery

- The parameter space of the MSSM is enormous.
 - The soft supersymmetry breaking Lagrangian includes more than 120 new parameters.
- How can we map out all possible signatures?
 - Simplified models: isolate particles for specific signature. Parameter space is tractable; only a few masses and branching ratios to specify.
 - pMSSM: phenomenologically motivated reduction to 19 parameters.

Berger, Gainer, Hewett, Rizzo [arXiv:0812.0980]

CMSSM/mSUGRA: 4 parameters.

Chamseddine, Arnowitt, Nath [PRL 49 (1982)]; Barbieri, Ferrara, Savoy [PLB (1982)]; Hall, Lykken, Weinberg [PRD (1983)]

- 4 parameters is potentially tractable.
- Can we understand all predictions of this ansatz?

A Simple Ansatz - a wide range of dynamics

- CMSSM is 4-dimensional subspace of the *R*-parity conserving MSSM.
- Defined at the GUT scale by the following (real) inputs:
 - The unified scalar soft mass M₀
 - The unified gaugino mass M_{1/2}
 - The unified A-term A₀
 - The ratio of the Higgs vevs tan β (traded for B_{μ} term).
- Parameters are evolved to M_W using the RGEs.
- µ-term determined by requiring m_z
- 19 coupled RGEs integrated over 32 e-folds ⇒ relation between input parameters & low energy spectrum is nonlinear.

The State of the Art

Both ATLAS and CMS put limits on the CMSSM:

- Exclusions are regions of the $\,M_{1/2}$ versus M_0 plane at fixed A_0 & tan β $\,$.
- What is the Higgs mass?
- Does the neutralino overclose the Universe?

- "Quadrants" defined by sign A_0 & sign μ with $M_{1/2} > 0$.
 - Schematically RGEs for A and B terms are

$$16 \pi^2 \frac{d}{dt} A = A \left(|y|^2 - g^2 \right) + y g^2 M,$$

$$16 \pi^2 \frac{d}{dt} B = B \left(|y|^2 - g^2 \right) + \mu \left(A y^{\dagger} + g^2 M \right),$$

Low energy spectrum is different depending quadrant.

What process determines the relic abundance?

- What process determines the relic abundance?
 - "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
 - "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
 - " A^0 pole": annihilation is dominated by an *s*-channel A^0 resonance.
 - "stau coannihilation"
 - "stop coannihilation"

What process determines the relic abundance?

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
- " A^0 pole": annihilation is dominated by an *s*-channel A^0 resonance.
- "stau coannihilation"
- "stop coannihilation"

• What process determines the relic abundance?

"light \$\tilde{\chi}^0\$": annihilation is dominated by the Z⁰ and h poles.
"well-tempered": annihilation via Higgsino/Bino mixing to W⁺ W⁻.
"A⁰ pole": annihilation is dominated by an s-channel A⁰ resonance.
"stau coannihilation"

• "stop coannihilation"

What process determines the relic abundance?

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$. • " A^0 pole": annihilation is dominated by an *s*-channel A^0 resonance.
- "stau coannihilation"
- "stop coannihilation"

• What process determines the relic abundance?

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
- "A⁰ pole": annihilation is dominated by an s-channel A⁰ resonance.
 "stau coannihilation"
- "stop coannihilation"

• What process determines the relic abundance?

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
- " A^0 pole": annihilation is dominated by an *s*-channel A^0 resonance.
- "stau coannihilation"

"stop coannihilation"

• What process determines the relic abundance?

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
- " A^0 pole": annihilation is dominated by an *s*-channel A^0 resonance.
- "stau coannihilation"

"stop coannihilation"

Grading The Post-h⁰ Discovery CMSSM Literature

- Light χ^0
- Well Tempered
- A⁰-pole
- Stau Coannihilation
- Stop Coannihilation

- A (Excluded by LHC gluinos)
- B- ("will be excluded by DD soon")
- D (nothing said recently)
- B ("will be excluded by LHC soon")
- F (Last paper in 2001)

CMSSM CARTOGRAPHY

12

The CMSSM is compact

- 125 GeV Higgs mass means M₀ not arbitrarily large.
- Relic density: not overclosing
 - Bounds M_{1/2} from being too large
- Lifetime of vacuum being longer than 14Gyr bounds A₀.
- Perturbativity of bottom Yukawa coupling bounds tan β.

The CMSSM is compact

- 125 GeV Higgs mass means M₀ not arbitrarily large.
- Relic density: not overclosing
 - Bounds M_{1/2} from being too large
- Lifetime of vacuum being longer than 14Gyr bounds A₀.
- Perturbativity of bottom Yukawa coupling bounds tan β.

<u>Consequence</u>

Every MSSM particle discoverable by a human-buildable accelerator

Tools

- SoftSUSY v3.3.7 computes low energy spectrum from CMSSM inputs. Allanach [arXiv:hep-ph/0104145]
 - Two loop MSSM RGEs (leading log decoupling is accounted for by the inclusion of all 1-loop finite terms).
 - The two loop contributions to the Higgs potential are included.
- DarkSUSY v5.1.1 computes the relic density and direct detection cross sections.
 - All 2-2 scattering processes are included. Gondolo, Edsjo, Ullio, Bergstrom, Schelke [arXiv:astro-ph/0406204]
- SUSY-HIT v1.3 computes the decay tables.

Djouadi, Muhlleitner, Spira [arXiv:hep-ph/0609292]

Constraints

• 3 GeV error for the theoretical prediction for the Higgs mass: $122 \text{ GeV} < m_h < 128 \text{ GeV}$

Allanach, Djuadi, Kneur, Porod, Slavich [arXiv:hep-ph/0406166]

Require the relic density be in the range:

 $0.08 < \Omega h^2 < 0.14$

 Require that the lifetime of vacuum decay to a charge/color breaking minimum be longer than 14Gyr:

$$|a_t|^2 < (7.5 m_{q_3}^2 + 7.5 m_{u_3^c}^2 + 3 (m_{H_u}^2 + |\mu|^2))$$

Kusenko, Langacker, Segre [arXiv:hep-ph/9602414]

Require that the chargino mass satisfy LEP bound:

 $\widetilde{m}_{\chi^+} > 100 \text{ GeV}$

Charting the CMSSM

Charting the CMSSM

17

Charting the CMSSM

- light $\widetilde{\chi}^0$

 Welltempered

- A^0 pole
- stau
 coann

stop
 coann

CIRCUMNAVIGATING THE CMSSM

Light $\widetilde{\chi}^0$

• $5 \lesssim \tan \beta \lesssim 50$

Light $\tilde{\chi}^0$ implies light gluinos

\widetilde{m}_g	\widetilde{m}_q	\widetilde{m}_{t_1}	\widetilde{m}_{τ_1}	m_{χ}	$m_{\chi_1^\pm}$	m_h	m_{A^0}	
409.28	5393.5	3098.7	5327.3	57.139	111.1	124.14	5214.8	
Probably Excluded								
$\widetilde{g} \to \widetilde{B} q \overline{q}$					1	9%		
$\widetilde{g} \to \widetilde{W}^{\pm} q \overline{q} \to \widetilde{B} W^{\pm} q \overline{q}$						l 6%		
	$\widetilde{g} \rightarrow$	$\widetilde{W}^0 q^{\frac{1}{2}}$	$\overline{q} \to \widetilde{B}$	$Z^0 q \overline{q}$	ę	34%		

Have separate searches for $\widetilde{g} \, \widetilde{g} \to W^{\pm} \, W^{\pm} \, q \, \overline{q} \, q \, \overline{q} \, \chi \, \chi$ $\widetilde{g} \, \widetilde{g} \to Z^0 \, Z^0 \, q \, \overline{q} \, q \, \overline{q} \, \chi \, \chi$ $\widetilde{g} \, \widetilde{g} \to q \, \overline{q} \, q \, \overline{q} \, \chi \, \chi$

Don't provide efficiencies of alternate simplified models

CIRCUMNAVIGATING THE CMSSM

Well-tempered

Setting sail for well-tempered

• light $\widetilde{\chi}^0$

- Welltempered
- A^0 pole
- stau
 coann
- stop
 coann

What about the LHC?

Well-tempered

The LHC will have little impact on the well-tempered spectra.

Will direct detection exclude this region?

• A 1-ton Xenon experiment can reach spin-independent cross sections of 5×10^{-12} pb at 300 GeV.

CIRCUMNAVIGATING THE CMSSM

26

 A^0 pole annihilation

Setting sail for A^0 pole annihilation

The squark-gluino plane A^0 pole annihilation (2nd quadrant) m_{squark} [GeV mgluino [GeV]

1st quadrant is similar.

Direct & Indirect Detection

CIRCUMNAVIGATING THE CMSSM

30

Stau coannihilation

Setting sail for stau coannihilation

• 200 GeV $\lesssim M_0 \lesssim 3$ TeV

• $5 \lesssim \tan \beta \lesssim 60$

Stau-coann: direct detection

- A 1-ton Xenon experiment can reach spin-independent cross sections of 5×10^{-12} pb at 300 GeV. Dark matter limit plotter [http://dmtools.brown.edu/]
- Direct detection can probe all of the 2nd quadrant.

Stau-coann: squark-gluino plane

Are these spectra discoverable at the LHC?

A stau-coann benchmark (3rd quad)

Input parameters							
M_0	$M_{1/2}$	A_0	an eta	$\operatorname{sign}(\mu)$	$ \mu $	B_{μ}	
259.515	900.862	-2296.71	9.23077	-1	-1555.68	7.574×10^7	

- The LSP is 383.52 GeV; the stau is 383.8 GeV.
 - The stau lifetime is $O(10^{-2} \text{ s})$. Probed via long-lived stau searches?
- The gluino is 1980 GeV.
- The squark masses are

	\widetilde{q}	\widetilde{b}_1	\widetilde{b}_2	\widetilde{t}_1	\widetilde{t}_2
$m[{ m GeV}]$	1780.8	1529.9	1715.3	1067.2	1562.9

Citron, Ellis, Luo, Marrouche, Olive, Vries [arXiv:1212.2886]

- The gluino branching ratios are
 - $\widetilde{g} \to \widetilde{t}_{1,2} + \overline{t}$ [52%]
 - $\widetilde{g} \rightarrow \widetilde{b}_{1,2} + \overline{b}$ [20%]
 - $\widetilde{g} \to \widetilde{q} + \overline{q}$ [28%]
- Probed via gluino pair production?

CIRCUMNAVIGATING THE CMSSM

Stop coannihilation

Setting sail for stop coannihilation

^{• 2} TeV $\lesssim M_0 \lesssim 12$ TeV

• $\tan\beta \lesssim 50$

Stop-coannihilation phenomenology

 A large portion of these spectra will require a machine beyond the 14 TeV LHC.

A Missing Simplified Model

A new simplified model appears in stop coannihilation

\widetilde{m}_g	\widetilde{m}_q	\widetilde{m}_{t_1}	$\widetilde{m}_{ au_1}$	m_{χ}	$m_{\chi_1^{\pm}}$
2174.1	3200.3	445.51	2636.4	410.64	790.82

$$\begin{split} \widetilde{t}_{1} \to \begin{cases} c \, \chi_{1}^{0} & 69\% \\ b \, (W^{+})^{*} \, \chi_{1}^{0} & 31\% \end{cases} \\ \widetilde{g} \to \overline{t} \, \widetilde{t}_{1} + \text{c.c.} & 100\% \\ \widetilde{q}_{R} \to q \, \widetilde{g} & 100\% \\ \widetilde{q}_{L} \to \begin{cases} q \, \widetilde{g} & 88\% \\ q' \, \chi_{1}^{+} & 8\% \\ q \, \chi_{2}^{0} & 4\% \end{cases} \end{split}$$

$$\sigma(p \, p \to \tilde{t}_1 \, \tilde{t}_1) = 1.21 \text{ pb.}$$

$$\sigma(p \, p \to \widetilde{g} \, \widetilde{g}) = 0.42 \text{ fb}$$

$$\sigma(p \, p \to \widetilde{g} \, \widetilde{q}) = 0.43 \text{ fb}.$$

Same Sign Tops (boosted)

ALMOST HOME

Conclusions

Conclusions

- CMSSM provides tractable ansatz & allows study of full parameter space.
- Provided a map of the CMSSM consistent with Higgs mass & thermal dark matter.
- Demonstrated that parameter space is compact.
- Regions will remain unconstrained after LHC14 and Ton scale spin-independent direct detection?
 - Large portions of the stop coannihilation regions.
- LHC results to be presented as generally as possible so it is easy to interpret bound for non-trivial models

More Simplified Model efficiency plots needed.

HERE BE DRAGONS

Colors in the CMSSM