
Surveying Models for 
Maximal Stop Mixing

David Shih

Based on:

Draper, Meade, Reece & DS (1112.3068)
Craig, Knapen, DS & Zhao (1206.4086)

Craig, Knapen & DS (1302.2642)
Evans & DS (1303.0228)



Higgs@125 and SUSY

The discovery of the Higgs at 125 GeV has profound implications 
for SUSY and naturalness.              
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FIG. 5. Messenger scale required to produce su�ciently large |A
t

| for m
h

= 123 GeV (left) and m
h

= 125 GeV
(right) through renormalization group evolution.

At = 0 at the messenger scale. Clearly this is not com-
pletely set in stone, and it would be interesting to look for
models of GMSB (or more generally flavor-blind models)
with large At at the messenger scale. This may be pos-
sible in more extended models, for instance in [37] where
the Higgses mix with doublet messengers.
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Appendix A: Comments on “heavy SUSY” scenarios

Although we have focused on mixed stops which can
be light enough to be produced at the LHC, let us briefly
consider the case of stops without mixing. For small
MS , we can compute the Higgs mass with FeynHiggs.
For larger MS , we use a one-loop RGE to evolve the
SUSY quartic down to the electroweak scale, computing
the physical Higgs mass by including self-energy correc-
tions [38, 39]. In Figure 6, we plot the resulting value of
mh as a function of MS , in the case of zero mixing. We
plot the FeynHiggs output only up to 3 TeV, at which
point its uncertainties become large and the RGE is more
trustworthy. One can see from the plot that accommo-

dating a 125 GeV Higgs in the MSSM with small A-terms
requires scalar masses in the range of 5 to 10 TeV.
A variation on this “heavy stop” scenario is Split Su-

persymmetry [40, 41], in which gauginos and higgsinos
have masses well below MS and influence the running of
�. In this case, the running below MS is modified by the
light superpartners, and the preferred scalar mass scale
for a 125 GeV Higgs can be even larger [42–44].
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FIG. 6. Higgs mass as a function of M
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, with X
t

= 0. The
green band is the output of FeynHiggs together with its as-
sociated uncertainty. The blue line represents 1-loop renor-
malization group evolution in the Standard Model matched
to the MSSM at M

S

. The blue bands give estimates of errors
from varying the top mass between 172 and 174 GeV (darker
band) and the renormalization scale between m

t

/2 and 2m
t

(lighter band).
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Higgs@125 and SUSY

MSSM

• mh ≤ mZ at tree-level. Need large 
radiative corrections from stops 
to lift mh to 125 GeV. 

• TeV-scale stops require large A-
terms (“maximal mixing”).

• Fine-tuning is at the percent level 
or worse. 

Beyond the MSSM

• Boost the Higgs mass with 
additional matter and interactions 
(singlets, extra gauge groups, ...)

• This can alleviate the fine tuning 
problem, but it usually introduces 
its own complications (Landau 
poles, unification, mu problems...)
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Higgs@125 and SUSY

MSSM

• mh ≤ mZ at tree-level. Need large 
radiative corrections from stops 
to lift mh to 125 GeV. 

• TeV-scale stops require large A-
terms (“maximal mixing”).

• Fine-tuning is at the percent level 
or worse. 

Beyond the MSSM

• Boost the Higgs mass with 
additional matter and interactions 
(singlets, extra gauge groups, ...)

• This can alleviate the fine tuning 
problem, but it usually introduces 
its own complications (Landau 
poles, unification, mu problems...)

Being more constrained, the MSSM allows for more in-depth study. 
Can build complete models with detailed predictions for the LHC.

Can focus on the question: how to generate large weak-scale A-terms? 



A-terms through RG

• Large weak-scale A-terms can arise through the RG.

• This is a highly constrained scenario. Requires M3 ≳ 3 TeV and 
Mmess ≳ 108 GeV.
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At = 0 at the messenger scale. Clearly this is not com-
pletely set in stone, and it would be interesting to look for
models of GMSB (or more generally flavor-blind models)
with large At at the messenger scale. This may be pos-
sible in more extended models, for instance in [37] where
the Higgses mix with doublet messengers.
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Appendix A: Comments on “heavy SUSY” scenarios

Although we have focused on mixed stops which can
be light enough to be produced at the LHC, let us briefly
consider the case of stops without mixing. For small
MS , we can compute the Higgs mass with FeynHiggs.
For larger MS , we use a one-loop RGE to evolve the
SUSY quartic down to the electroweak scale, computing
the physical Higgs mass by including self-energy correc-
tions [38, 39]. In Figure 6, we plot the resulting value of
mh as a function of MS , in the case of zero mixing. We
plot the FeynHiggs output only up to 3 TeV, at which
point its uncertainties become large and the RGE is more
trustworthy. One can see from the plot that accommo-

dating a 125 GeV Higgs in the MSSM with small A-terms
requires scalar masses in the range of 5 to 10 TeV.
A variation on this “heavy stop” scenario is Split Su-

persymmetry [40, 41], in which gauginos and higgsinos
have masses well below MS and influence the running of
�. In this case, the running below MS is modified by the
light superpartners, and the preferred scalar mass scale
for a 125 GeV Higgs can be even larger [42–44].
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A-terms through Messengers

• A-terms can also arise through MSSM/messenger interactions.

• Gauge interactions not enough, need direct couplings, e.g.

MSSM
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L
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Q
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A-terms are Bilinear Couplings

• The A-terms generally arise as bilinear couplings:

• After integrating out the auxiliary fields, these become the usual 
trilinear A-terms:

• Higgs-type A-terms are automatically MFV; the squark-type A-
terms are not.
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An obstacle to large A-terms

• Problem: the effective operators for A-terms and for mass-
squareds are very similar.

• So they tend to be generated at the same loop order, implying: 

• This is disastrous for EWSB and/or naturalness!
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• So they tend to be generated at the same loop order, implying: 

• This is disastrous for EWSB and/or naturalness!
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“The A/m2 problem”
(Craig, Knapen, DS & Zhao)



Analogy with μ/Bμ
• The A/m2 problem is completely analogous to the more well-

known μ/Bμ problem. 

• The operators for μ and Bμ also only differ by one power of X:

• Before the Higgs was discovered at 125 GeV, we were not forced 
to confront the A/m2 problem.  

• Now it is on the same footing as the μ/Bμ problem!

cµ

Z
d4✓

X†

M
HuHd vs. cBµ

Z
d4✓

X†X

M2
HuHd



The Little A/m2 Problem



The Little A/m2 Problem

• Actually, the A/m2 problem is worse than μ/Bμ.



The Little A/m2 Problem

• Actually, the A/m2 problem is worse than μ/Bμ.

• Unlike Bμ,  m2 is neutral under all symmetries. So one cannot 
solve the A/m2 problem by imposing a global symmetry.



The Little A/m2 Problem

• Actually, the A/m2 problem is worse than μ/Bμ.

• Unlike Bμ,  m2 is neutral under all symmetries. So one cannot 
solve the A/m2 problem by imposing a global symmetry.

• Even if one solves the A/m2 problem, a residual problem remains: 
integrating out the auxiliary fields produces a large, positive 
contribution to m2

F †
QFQ +AQF

†
QQ+ c.c. ! �m2

Q = +A2
Q



The Little A/m2 Problem

• Actually, the A/m2 problem is worse than μ/Bμ.

• Unlike Bμ,  m2 is neutral under all symmetries. So one cannot 
solve the A/m2 problem by imposing a global symmetry.

• Even if one solves the A/m2 problem, a residual problem remains: 
integrating out the auxiliary fields produces a large, positive 
contribution to m2

• For Higgs A-terms, this presents problems for radiative EWSB 
(because                    ) and greatly exacerbates fine tuning.

F †
QFQ +AQF

†
QQ+ c.c. ! �m2

Q = +A2
Q

A
t

⇠ m
stop



The Little A/m2 Problem

• Actually, the A/m2 problem is worse than μ/Bμ.

• Unlike Bμ,  m2 is neutral under all symmetries. So one cannot 
solve the A/m2 problem by imposing a global symmetry.

• Even if one solves the A/m2 problem, a residual problem remains: 
integrating out the auxiliary fields produces a large, positive 
contribution to m2

• For Higgs A-terms, this presents problems for radiative EWSB 
(because                    ) and greatly exacerbates fine tuning.

• For squark A-terms, there is no problem with EWSB, and fine-tuning is not as 
bad. (Evans & DS)

F †
QFQ +AQF

†
QQ+ c.c. ! �m2

Q = +A2
Q
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Classifying the models

SUSY \ Mess Weak Strong

Weak Fully calculable. 
Must be MGM

Incalculable? 
No loop factor, no 

problem?

Strong
Partially calculable. 

Hidden-sector 
sequestering?

Incalculable? 
No loop factor, no 

problem?



• Weakly-coupled messengers + spurion SUSY-breaking:
messengers must be MGM-type!! (Craig, Knapen, DS & Zhao)

• However, the little A/m2 problem cannot be avoided. 

• We recently classified and surveyed all models consistent with 
perturbative SU(5) unification (Evans & DS).  

Weakly-coupled models

mij = 0 with hXi = M + ✓2F

W = Wmess +Wint =
⇣
ijX�i�̃j +mij�i�j

⌘
+ �ijQ�i�j + . . .

(Q = QL3, UR3, Hu)



# Coupling |�b| Best Point { ⇤

M ,�} |At| /MS Mg̃ MS |µ| Tuning

I.1 Hu�
5,L�1,S Nm {0.375, 1.075} 1.98 3222 1842 777 3400

I.2 Hu�10,Q�10,U 3Nm {0.25, 1.075} 1.99 3178 1828 789 2450
I.3 Hu�

5,D�
10,Q 4 {0.25, 1.3} 2.05 2899 1709 668 3200

I.4 Hu�
5,L�10,E 4 {0.125, 0.95} 0.58 11134 8993 2264 4050

I.5 Hu�
5,L�24,S 6 {0.225, 1.000} 0.54 13290 9785 3408 3850

I.6 Hu�
5,L�24,W 6 {0.15, 1.025} 0.67 11835 8637 3259 3410

I.7 Hu�
5,D�

24,X 6 {0.3, 1.425} 2.04 3020 1743 576 3500
I.8 Q�

10,Q�1,S 3Nm {0.534, 1.5} 2.82 4336 1274 2056 1015
I.9 Q�

5,D�
5,L Nm {0.353, 0.858} 2.67 4247 1342 2058 1015

I.10 Q�
10,U�5,Hu 4 {0.51, 1.788} 2.65 4040 1318 2301 1275

I.11 Q�
10,Q�

5,D 4 {0.378, 1.245} 2.76 4020 1257 2292 1260
I.12 U�

10,U�1,S 3Nm {0.476, 1.622} 2.62 3815 1347 2070 1030
I.13 U�

5,D�
5,D 2Nm {0.301, 0.908} 2.91 3829 1199 2061 1020

I.14 U�
10,Q�5,Hu

4 {0.37, 1.352} 2.81 3575 1220 2312 1285
I.15 U�

10,E�
5,D 4 {0.51, 1.972} 2.63 3526 1312 2310 1280

II.1 QU�
5,Hu 1 {0.55, 1.64} 2.02 769 1965 2738 1800

II.2 UHu�10,Q 3 {0.009, 1.067} 2.14 2203 1628 543 850
II.3 QHu�10,U 3 {0.269, 1.05} 2.27 2514 1458 439 1500
II.4 QD�

5,Hd
1 {0.37, 1.2} 1.78 2597 1829 3553 3020

II.5 QHd�
5,D 1 {0.15, 1.19} 1.45 2497 2108 3773 6050

II.6 QQ�
5,D 1 {0.45, 0.1} 0.22 7943 9870 3610 5000

II.7 UD�
5,D 1 {0.21, 1.26} 2.34 1374 1334 2998 2150

II.8 QL�
5,D 1 {0.14, 1.2} 1.51 1501 1204 2203 3700

II.9 UE�
5,D 1 {0.445, 1.46} 1.89 2004 1750 3373 2730

II.10 HuD�
24,X 5 {0.42, 1.45} 2.13 2943 1649 282 3500

II.11 HuL�1,S 1⇤ {0.15, 0.675} 0.54 7103 8166 3714 4930
II.12 HuL�24,S 5 {0.296, 0.96} 0.53 12629 9660 3333 3780
II.13 HuL�24,W 5 {0.212, 0.96} 0.65 11487 8710 3687 3380
II.14 HuHd�1,S 1⇤ {0.125, 0.675} 0.55 7049 8051 3255 5000
II.15 HuHd�24,S 5 {0.20, 1.00} 0.57 12047 9213 1628 4220
II.16 HuHd�24,W 5 {0.2, 0.946} 0.64 11571 8789 3665 3460

Table 1. All possible marginal MSSM-messenger couplings compatible with a perturbative SU(5) framework
are tabulated here. The point with the least tuning in each model is also presented. The tuning measure
used is defined in (3.7) and is discussed more in Appendix B. Additionally, the values of |At| /MS , Mg̃, MS

and |µ| at this least tuned point are shown. Models with |At| /MS < 1 rely on heavy stops as opposed to
mixed stops. Models II.11-13 generate large neutrino masses. Models II.14-16 possess a µ/Bµ problem. In
the third column, |�b| refers to the messenger contribution to the SU(5) beta function. As the singlet does
not contribute to GMSB, models II.11 and II.14 are assigned an additional �5 � �5.

�FT ⇠ 103. Many of the models involving Higgs fields have very large MS (and small |At| /MS)
because they are relying on heavy stops to generate mh = 125, as opposed to using maximal mixing.
As these models are unable to achieve maximal mixing without substantial tuning entering elsewhere
(due to the little A/m2

Hu
problem), we make no e↵ort to optimize the tuning in these models by

scanning regions of parameter space where the MSSM-messenger contributions are small. Details
concerning the various models will be discussed in the next subsections.
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5,D 1 {0.15, 1.19} 1.45 2497 2108 3773 6050

II.6 QQ�
5,D 1 {0.45, 0.1} 0.22 7943 9870 3610 5000

II.7 UD�
5,D 1 {0.21, 1.26} 2.34 1374 1334 2998 2150

II.8 QL�
5,D 1 {0.14, 1.2} 1.51 1501 1204 2203 3700

II.9 UE�
5,D 1 {0.445, 1.46} 1.89 2004 1750 3373 2730

II.10 HuD�
24,X 5 {0.42, 1.45} 2.13 2943 1649 282 3500

II.11 HuL�1,S 1⇤ {0.15, 0.675} 0.54 7103 8166 3714 4930
II.12 HuL�24,S 5 {0.296, 0.96} 0.53 12629 9660 3333 3780
II.13 HuL�24,W 5 {0.212, 0.96} 0.65 11487 8710 3687 3380
II.14 HuHd�1,S 1⇤ {0.125, 0.675} 0.55 7049 8051 3255 5000
II.15 HuHd�24,S 5 {0.20, 1.00} 0.57 12047 9213 1628 4220
II.16 HuHd�24,W 5 {0.2, 0.946} 0.64 11571 8789 3665 3460

Table 1. All possible marginal MSSM-messenger couplings compatible with a perturbative SU(5) framework
are tabulated here. The point with the least tuning in each model is also presented. The tuning measure
used is defined in (3.7) and is discussed more in Appendix B. Additionally, the values of |At| /MS , Mg̃, MS

and |µ| at this least tuned point are shown. Models with |At| /MS < 1 rely on heavy stops as opposed to
mixed stops. Models II.11-13 generate large neutrino masses. Models II.14-16 possess a µ/Bµ problem. In
the third column, |�b| refers to the messenger contribution to the SU(5) beta function. As the singlet does
not contribute to GMSB, models II.11 and II.14 are assigned an additional �5 � �5.

�FT ⇠ 103. Many of the models involving Higgs fields have very large MS (and small |At| /MS)
because they are relying on heavy stops to generate mh = 125, as opposed to using maximal mixing.
As these models are unable to achieve maximal mixing without substantial tuning entering elsewhere
(due to the little A/m2

Hu
problem), we make no e↵ort to optimize the tuning in these models by

scanning regions of parameter space where the MSSM-messenger contributions are small. Details
concerning the various models will be discussed in the next subsections.
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Table 1. All possible marginal MSSM-messenger couplings compatible with a perturbative SU(5) framework
are tabulated here. The point with the least tuning in each model is also presented. The tuning measure
used is defined in (3.7) and is discussed more in Appendix B. Additionally, the values of |At| /MS , Mg̃, MS

and |µ| at this least tuned point are shown. Models with |At| /MS < 1 rely on heavy stops as opposed to
mixed stops. Models II.11-13 generate large neutrino masses. Models II.14-16 possess a µ/Bµ problem. In
the third column, |�b| refers to the messenger contribution to the SU(5) beta function. As the singlet does
not contribute to GMSB, models II.11 and II.14 are assigned an additional �5 � �5.

�FT ⇠ 103. Many of the models involving Higgs fields have very large MS (and small |At| /MS)
because they are relying on heavy stops to generate mh = 125, as opposed to using maximal mixing.
As these models are unable to achieve maximal mixing without substantial tuning entering elsewhere
(due to the little A/m2

Hu
problem), we make no e↵ort to optimize the tuning in these models by

scanning regions of parameter space where the MSSM-messenger contributions are small. Details
concerning the various models will be discussed in the next subsections.
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Table 1. All possible marginal MSSM-messenger couplings compatible with a perturbative SU(5) framework
are tabulated here. The point with the least tuning in each model is also presented. The tuning measure
used is defined in (3.7) and is discussed more in Appendix B. Additionally, the values of |At| /MS , Mg̃, MS

and |µ| at this least tuned point are shown. Models with |At| /MS < 1 rely on heavy stops as opposed to
mixed stops. Models II.11-13 generate large neutrino masses. Models II.14-16 possess a µ/Bµ problem. In
the third column, |�b| refers to the messenger contribution to the SU(5) beta function. As the singlet does
not contribute to GMSB, models II.11 and II.14 are assigned an additional �5 � �5.

�FT ⇠ 103. Many of the models involving Higgs fields have very large MS (and small |At| /MS)
because they are relying on heavy stops to generate mh = 125, as opposed to using maximal mixing.
As these models are unable to achieve maximal mixing without substantial tuning entering elsewhere
(due to the little A/m2

Hu
problem), we make no e↵ort to optimize the tuning in these models by

scanning regions of parameter space where the MSSM-messenger contributions are small. Details
concerning the various models will be discussed in the next subsections.
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Figure 6. The spectra for some of the better models at their points of least tuning are shown. All type I
squark models are shown to the left (Q: I.8-11 and U : I.12-15), type II models, including the three models
which mix the top Yukawa with the messenger field and the UD�D (II.7) are shown to the right. I.90 and I.130

denote the best point within the distinct region of comparable tuning accessible in these two models (see fig. 3)
which present a very di↵erent spectra. In the plot, thick, large lines denote colored particles – g̃, t̃1, t̃2, b̃1, b̃2
and q̃ (the nearly degenerate first-generation squarks) are shown. The thinner lines denote uncolored particles
– ˜̀, �̃0 and �̃± are shown. All four neutralinos and both charginos are displayed. In nearly all models, all
right-handed sleptons and all left-handed sleptons/sneutrinos are approximately degenerate.

suggests that the non-observation of SUSY and the presence of a heavy Higgs may be correlated issues
rather than two distinct problems of SUSY.

4.1 Type I squark models

In the region of least tuning (the base of the horn in fig. 3), the type I squark models have heavy
gluinos and first generation squarks falling between ⇠3.5-5 and ⇠3-4.5 TeV respectively, while the
lightest stop (as well as the sbottom in Q

3

models) has a mass between ⇠0.5-1 TeV. Additionally,
there is almost always an NLSP ⌧̃ or co-NLSP ˜̀s generally between ⇠300-500 GeV (although these
sometimes appear even heavier than 700 GeV). However, the other region of low tuning appearing in
models I.9 and I.13 (in the center of the horn) has a rather di↵erent profile (the best points of this
second region are denoted by I.90 and I.130 in fig. 6). Here, the models have heavier stops, ⇠1.2-2
TeV, but since ⇤ has dropped significantly, the gluinos and first-generation squarks are now much
lighter ⇠2.0-3.5 TeV and ⇠1.5-3 TeV, respectively. Surveying these points with less tuning, it is clear
that the mass of the lightest stop and the masses of the gluino and first-generation squarks tend to be
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Figure 6. The spectra for some of the better models at their points of least tuning are shown. All type I
squark models are shown to the left (Q: I.8-11 and U : I.12-15), type II models, including the three models
which mix the top Yukawa with the messenger field and the UD�D (II.7) are shown to the right. I.90 and I.130

denote the best point within the distinct region of comparable tuning accessible in these two models (see fig. 3)
which present a very di↵erent spectra. In the plot, thick, large lines denote colored particles – g̃, t̃1, t̃2, b̃1, b̃2
and q̃ (the nearly degenerate first-generation squarks) are shown. The thinner lines denote uncolored particles
– ˜̀, �̃0 and �̃± are shown. All four neutralinos and both charginos are displayed. In nearly all models, all
right-handed sleptons and all left-handed sleptons/sneutrinos are approximately degenerate.

suggests that the non-observation of SUSY and the presence of a heavy Higgs may be correlated issues
rather than two distinct problems of SUSY.

4.1 Type I squark models

In the region of least tuning (the base of the horn in fig. 3), the type I squark models have heavy
gluinos and first generation squarks falling between ⇠3.5-5 and ⇠3-4.5 TeV respectively, while the
lightest stop (as well as the sbottom in Q

3

models) has a mass between ⇠0.5-1 TeV. Additionally,
there is almost always an NLSP ⌧̃ or co-NLSP ˜̀s generally between ⇠300-500 GeV (although these
sometimes appear even heavier than 700 GeV). However, the other region of low tuning appearing in
models I.9 and I.13 (in the center of the horn) has a rather di↵erent profile (the best points of this
second region are denoted by I.90 and I.130 in fig. 6). Here, the models have heavier stops, ⇠1.2-2
TeV, but since ⇤ has dropped significantly, the gluinos and first-generation squarks are now much
lighter ⇠2.0-3.5 TeV and ⇠1.5-3 TeV, respectively. Surveying these points with less tuning, it is clear
that the mass of the lightest stop and the masses of the gluino and first-generation squarks tend to be
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All but one of the best-tuned points with mh=125 GeV were out 
of reach at 7+8 TeV LHC, but could be accessible at 14 TeV LHC. 

(taus+MET, multileptons, stop searches) 
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Figure 6. The spectra for some of the better models at their points of least tuning are shown. All type I
squark models are shown to the left (Q: I.8-11 and U : I.12-15), type II models, including the three models
which mix the top Yukawa with the messenger field and the UD�D (II.7) are shown to the right. I.90 and I.130

denote the best point within the distinct region of comparable tuning accessible in these two models (see fig. 3)
which present a very di↵erent spectra. In the plot, thick, large lines denote colored particles – g̃, t̃1, t̃2, b̃1, b̃2
and q̃ (the nearly degenerate first-generation squarks) are shown. The thinner lines denote uncolored particles
– ˜̀, �̃0 and �̃± are shown. All four neutralinos and both charginos are displayed. In nearly all models, all
right-handed sleptons and all left-handed sleptons/sneutrinos are approximately degenerate.

suggests that the non-observation of SUSY and the presence of a heavy Higgs may be correlated issues
rather than two distinct problems of SUSY.

4.1 Type I squark models

In the region of least tuning (the base of the horn in fig. 3), the type I squark models have heavy
gluinos and first generation squarks falling between ⇠3.5-5 and ⇠3-4.5 TeV respectively, while the
lightest stop (as well as the sbottom in Q

3

models) has a mass between ⇠0.5-1 TeV. Additionally,
there is almost always an NLSP ⌧̃ or co-NLSP ˜̀s generally between ⇠300-500 GeV (although these
sometimes appear even heavier than 700 GeV). However, the other region of low tuning appearing in
models I.9 and I.13 (in the center of the horn) has a rather di↵erent profile (the best points of this
second region are denoted by I.90 and I.130 in fig. 6). Here, the models have heavier stops, ⇠1.2-2
TeV, but since ⇤ has dropped significantly, the gluinos and first-generation squarks are now much
lighter ⇠2.0-3.5 TeV and ⇠1.5-3 TeV, respectively. Surveying these points with less tuning, it is clear
that the mass of the lightest stop and the masses of the gluino and first-generation squarks tend to be
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All but one of the best-tuned points with mh=125 GeV were out 
of reach at 7+8 TeV LHC, but could be accessible at 14 TeV LHC. 

(taus+MET, multileptons, stop searches) 

Is the fact that we haven’t seen superpartners yet an inevitable 
consequence of mh=125 GeV?
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Strongly-coupled hidden sectors

• Revisit the idea of hidden-sector sequestering.

• Proposed before as a way to solve the μ/Bμ problem 
(Dine et al ’04; Murayama et al ’07; Roy & Schmaltz ’07). 



Strongly-coupled hidden sectors

• Revisit the idea of hidden-sector sequestering.

• Proposed before as a way to solve the μ/Bμ problem 
(Dine et al ’04; Murayama et al ’07; Roy & Schmaltz ’07). 

• Their idea: Bμ comes from a non-chiral operator in the hidden 
sector.  That operator could acquire an anomalous dimension 
through hidden-sector interactions

• If this anomalous dimension is large enough, it could suppress Bμ 
relative to μ.
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• If Δ > ΔX , then Bμ can be suppressed relative to μ2:
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• If Δ > ΔX , then Bμ can be suppressed relative to μ2:

• Our proposal: the same mechanism could also solve the A/m2 
problem! (Craig, Knapen & DS 1302.2642)
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Subtleties and confusions

• There have been several long-standing confusions regarding 
hidden-sector sequestering:
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Subtleties and confusions

• There have been several long-standing confusions regarding 
hidden-sector sequestering:

• In the RG, the A-term operator squared will regenerate the m2 operator via 
the OPE.  Does this spoil the sequestering?
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Subtleties and confusions

• There have been several long-standing confusions regarding 
hidden-sector sequestering:

• In the RG, the A-term operator squared will regenerate the m2 operator via 
the OPE.  Does this spoil the sequestering?

• Does integrating out the auxiliary fields reintroduce m2 as in the little A/m2 

problem, spoiling the sequestering?
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Subtleties and confusions

• Perez, Roy & Schmaltz ’08 argued that none of this happens. Their 
argument was based on field redefinitions:

• If X is nearly free in the UV, then the A-term operator is redundant; it can be 
removed by the field redefinition

• Then the field-redefined theory only has an m2 operator, which can be fully 
sequestered!
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• If X is nearly free in the UV, then the A-term operator is redundant; it can be 
removed by the field redefinition

• Then the field-redefined theory only has an m2 operator, which can be fully 
sequestered!

• Craig and Green ’09 pointed out several gaps in this argument:
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• The RG definitely contains a term proportional to cA2 . Integrating the RG 
appears to produce an unsequestered term. 
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A fresh look at sequestering

• What is the correct picture?

• Using the correlator formalism of GGM, we brought a new angle 
to bear on these questions (Craig, Knapen & DS)

MSSMHidden

E ∼

√

F E ∼ M

Om

Ou,d

Messenger
κOhOm λuOuHu + λdOdHd

Oh

Fig. 1: The general setup of GMHM, assuming doublet portals connecting the
Higgs sector to the messenger sector. The messengers are characterized by a scale

M , and they communicate via another perturbative superpotential interaction with
the hidden sector, which is characterized by a SUSY-breaking scale

√
F .

Computing soft parameters in the framework of GMHM involves a double expansion

in λu,d and κ. Carefully performing this double expansion and manipulating the resulting

correlators, we will derive fully general formulas for Higgs soft parameters in any setup of

the form in fig. 1:

µ = λuλdκ
∗ 〈Q̄2O†

h〉h
∫

d4y Cµ(y)

Au,d = |λu,d|2κ∗ 〈Q̄2O†
h〉h

∫
d4y CAu,d

(y)

Bµ = λuλd|κ|2
∫

d4yd4y′ 〈Q4[O†
h(y)Oh(y

′)]〉hCBµ
(y, y′;λu,d)

m2
Hu,d

= −|µ|2 + |λu,d|2|κ|2
∫

d4yd4y′ 〈Q4[O†
h(y)Oh(y

′)]〉hCm2
Hu,d

(y, y′;λu,d)

(1.8)

where Q4 = Q2Q̄2. Cµ, etc. are integrated correlation functions of messenger-sector oper-

ators; explicit expressions for them will be given in Section 2. Since we have expanded to

NLO in λu,d, CBµ
and Cm2

Hu,d

contain O(|λu,d|2) corrections.
These formulas have broad applicability, as they may be used to compute Higgs soft

parameters for any model with Higgs-messenger couplings in which the messenger sector

and SUSY-breaking hidden sector factorize. We will illustrate this in several ways, starting

with showing how they reproduce the results of the weakly-coupled spurion models of [6].

In these models, the hidden sector has no dynamics, and so

〈Q4[O†
h(y)Oh(y

′)]〉h → |〈Q2Oh〉|2 (1.9)

We will show how the A/m2
H problem is a generic property of the integrated messenger

correlators
∫
Cm2

Hu,d

and
∫
CAu,d

, and how the little A/m2
H problem (made explicit in

(1.5)) arises from the disconnected part of Cm2
Hu,d

.
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General Higgs Mediation

• The correlator formalism of GGM was first applied to Higgs-
messenger interactions by Komargodski & Seiberg ’08.

• Formulas for μ,  Bμ,  A and mHu,d
2 to leading order in λu,d, 

assuming a unified hidden+messenger sector:

µ = ��u�d

Z
d4x

D
Q�Ou(x)Q�Od(0)

E

h+m

Au,d = |�u,d|2
Z

d4x
D
Q̄2

h
Ou,d(x)O

†
u,d(0)

iE

h+m

B̂µ = ��u�d

Z
d4x

D
Q2Ou(x)Q

2Od(0)
E

h+m

m̂2
Hu,d

= �|�u,d|2
Z

d4x
D
Q2Q̄2

h
Ou,d(x)O

†
u,d(0)

iE

h+m
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GMHM expansion

• We extended the KS results in two ways:

• Separated messenger and hidden sector so we can take F<<M2 

(cf Dumitrescu, Komargodski, Seiberg & DS ’10). 

• Went to NLO in λu,d for Bμ and mHu,d
2 to address the subtleties.
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GMHM expansion

• We extended the KS results in two ways:

• Separated messenger and hidden sector so we can take F<<M2 

(cf Dumitrescu, Komargodski, Seiberg & DS ’10). 

• Went to NLO in λu,d for Bμ and mHu,d
2 to address the subtleties.

• With separate messenger and hidden sectors, we can expand in 
the portal connecting them:

• Then can factorize messenger and hidden-sector correlators and 
use SUSY to simplify the former.

W = OhOm

hOhOm . . . ih+m = hOh . . . ih ⇥ hOm . . . im



GMHM Results

• Final GMHM formulas

simply

Bµ = λuλd|κ|2
∫

d4y d4y′
〈
Q4
[
O†

h(y)Oh(y
′)
]〉

h,full

〈
Om(y)O†

m(y′)XBµ

〉

m,full

m2
Hu,d

= −|µ|2 + |λu,d|2|κ|2
∫

d4y d4y′
〈
Q4
[
O†

h(y)Oh(y
′)
]〉

h,full

〈
Om(y)O†

m(y′)Xm2
Hu,d

〉

m,full

(2.6)

where for m2
Hu,d

we have subtracted out |µ|2 to adhere to the standard convention for

these soft masses. These formulas are valid at O(|κ|2) and up to O(|λu,d|4), i.e. at the

same order in the GMHM expansion as our results for µ2, etc.

Let us conclude this section with one important observation about (2.6) that we will

need later: even though the full messenger correlators – including disconnected parts – are

used in (2.6), in fact only the region of integration with |y− y′| ! 1/M contributes to the

soft masses. The reason is that the full messenger correlators fall off exponentially at long

distance: 〈
Om(y)O†

m(y′)XBµ,m2
Hu,d

〉

m,full
→ 0 as |y − y′| # 1/M (2.7)

since effectively only connected messenger diagrams contribute after integrating out the

Higgs auxiliary fields. (For more explicit details, we again refer the reader to Appendix

A.) This implies that when
√
F % M – as is generally the case in models of dynamical

SUSY breaking – the hidden sector correlator is effectively at short distance and the

expressions (2.6) can be further simplified using the OPE in the hidden sector. We will

put this observation to work in the next section when we discuss hidden sectors that are

approximately superconformal at the scale M .

3. Examples

The power of the GMHM formalism becomes apparent upon considering various spe-

cial cases in which the general expressions (2.5) simplify further. As was shown in [13],

illustrative examples include the well-known spurion limit employed in the study of many

weakly-coupled models (such as those in [6,9]); and the SCFT limit used to study hid-

den sector sequestering [14-19]. As we will see, the latter idea is especially attractive –

although originally proposed for solving the µ/Bµ problem, we will show that it can work

equally well for the A/m2
H problem. In the following subsections, we will consider these

two special limits in turn, and show how they are reproduced in the GMHM framework.

12

2.2. Higgs soft parameters in GMHM

As discussed in the introduction, in the GMHM setup we further divide the overall hid-

den sector into a separate SUSY-breaking hidden sector and messenger sector, connected

by a weakly-coupled portal. (We take the operators Ou and Od to be in the messenger

sector, as shown in fig. 1.) Although in [13] more general portals were considered, in this

paper we are focusing on the superpotential portal (1.6) for simplicity. We then expand in

κ and factorize the correlators (2.1) into separate correlators of the messenger and hidden

sectors. Supersymmetry in the messenger sector then allows us to simplify the resulting

expressions.

One general problem that immediately arises is that one typically finds both

dimension-one soft masses and Bµ already at O(κ). This would be disastrous for EWSB,

as it would imply Bµ ∼ µ × M , where M is the messenger scale. As we discuss more in

Appendix A, a symmetry of the messenger sector that can forbid this while allowing for

nonzero µ and Au,d (and gaugino masses) is an R-symmetry under which

R(Om) = 2, R(Ou) +R(Od) = 4 (2.4)

We will assume this R-symmetry throughout the paper.

With this in hand, we find that the GHM expressions (2.1) become, at the leading

nonvanishing order in κ:

µ = λuλdκ
∗ 〈Q̄2O†

h〉h
∫

d4y
〈
O†

m(y)Xµ

〉

m

Au,d = |λu,d|2κ∗ 〈Q̄2O†
h〉h

∫
d4y

〈
O†

m(y)XAu,d

〉

m

B̂µ = λuλd|κ|2
∫

d4y d4y′
〈
Q4
[
O†

h(y)Oh(y
′)
]〉

h

〈
Om(y)O†

m(y′)XBµ

〉

m

m̂2
Hu,d

= |λu,d|2|κ|2
∫

d4y d4y′
〈
Q4
[
O†

h(y)Oh(y
′)
]〉

h

〈
Om(y)O†

m(y′)Xm2
Hu,d

〉

m

(2.5)

For more details, we refer the reader to Appendix A. Here the m and h subscripts denote

correlators evaluated purely in the messenger and SUSY-breaking hidden sector, respec-

tively. The integrated operators Xµ etc. were defined in (2.2); now the components of the

Higgs fields are understood to be contracted. In the last two lines we see that the an-

swers always organize themselves so that they depend on a single hidden sector correlator,〈
Q4
[
O†

h(y)Oh(y′)
]〉

h
.

10
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Application to hidden-sector 
sequestering



• If the hidden sector is described by an interacting fixed point, can 
use the OPE to simplify the 2-pt fn

3.2. Models with hidden sector SCFTs

In these models we take
√
F " M , with the hidden sector described by an approximate

SCFT at and above the scale M . Then, as discussed below (2.6), the hidden sector

correlator 〈Q4[O†
h(y)Oh(y′)]〉h,full is always pinned by the messenger sector correlator at

|y − y′| ! 1
M " 1√

F
, i.e. at short distance. So we can apply the OPE of the SCFT to it:

Oh(y)O†
h(y

′) ∼ |y − y′|−2∆h1+ C∆|y − y′|γO∆(y′) + . . . (3.5)

where

γ ≡ ∆− 2∆h (3.6)

Here 1 is the unit operator (it drops out under the action of Q4), and O∆ (with dimension

∆) is the lowest-dimension scalar operator in the UV fixed point of the hidden sector. The

. . . denotes terms with higher-dimension operators; we neglect them here as they will be

further suppressed by F/M2. Substituting this into (2.6) we obtain

Bµ ≈ λuλd|κ|2C∆〈Q4O∆〉h
∫

d4y d4y′ |y − y′|γ
〈
Om(y)O†

m(y′)XBµ

〉

m,full

m2
Hu,d

≈ −|µ|2 + |λu,d|2|κ|2C∆〈Q4O∆〉h
∫

d4y d4y′ |y − y′|γ
〈
Om(y)O†

m(y′)Xm2
Hu,d

〉

m,full

(3.7)

As in the spurion limit, the general expressions for µ and Au,d again remain unchanged with

respect to (2.5). So if γ > 0 (i.e. ∆ > 2∆h) and
√
F " M , the contributions proportional

to 〈Q4O∆〉h are subleading with respect to those proportional to |〈Q2Oh〉h|2, and they

are suppressed relative to µ2 and A2
u,d. This is precisely the phenomenon of hidden-sector

sequestering [14-16], as seen from the point of view of GMHM. From (3.7), we note that

the −|µ|2 contribution to m2
Hu,d

is the only unsequestered contribution to the soft masses;
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• Surprisingly, the field redefinition argument works beyond where 
it should! 

• There is no little A/m2 problem -- the disconnected A2 
contribution to mH2 is absorbed into the full hidden-sector 2-pt 
function, which then becomes sequestered via the OPE.

• Why did the RGEs give a misleading result? 
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• By these considerations, all approaches to the phenomenon of 
hidden sector sequestering are brought into agreement.

• GMHM provides a powerful unified framework for describing all 
models of direct messenger-Higgs couplings. 

• Hidden sector sequestering is just a special case.

• As a fixed order calculation, the GMHM calculation provides more control over 
the final result than previous approaches, which were based on the RG.

Subtleties and confusions 
begone



Summary

• A 125 GeV Higgs in the MSSM calls for                     and the 
“maximal mixing” scenario:                    .

• In this talk, we have surveyed the different options for achieving 
large A-terms in the MSSM. 

• A-terms from RG

• needs heavy gluinos and high messenger scale

• A-terms from MSSM/messenger interactions

• weakly coupled: messengers must be MGM-type

• strong coupled: hidden sector sequestering is a viable option

• We have highlighted the difficulties for EWSB and naturalness 
posed by the A/m2 problem and the little A/m2 problem.

At ⇠
p
6mt̃

mt̃ & 1 TeV



Some works in progress

• The correlator formulas of GMHM offer a way to parametrize 
sequestered models. We are currently studying the 
phenomenology of these models (Craig, Knapen & DS)

• Weakly-coupled models with squark-type MSSM/messenger 
interactions were less fine-tuned than the Higgs-type 
interactions. But these are not MFV in general.  There could be 
nontrivial constraints from flavor and CP.  We are currently 
studying this in detail (Evans, DS & Thalapallil)



The End


