Higgs Factories: Present and Future

Chris Tully Princeton

Higgs Physics Beyond Discovery April 26, 2013

Higgs Physics in the Big Picture

- Will the detailed properties of the Higgs boson tell us more about the laws of physics?
 - What is the nature of dark matter?
 - Does dark matter interact with the Higgs boson?
 - Why is there a large-scale universe?
 - Are there symmetries or properties of space-time that made this possible and will such properties be discovered through the detailed study of the Higgs boson?
 - Why weren't the elementary particles given heavy masses –
 this in itself is partly responsible for the large discrepancy in
 the strength of gravity relative to electroweak interactions?
 The universe is not a small dot but seems like it should be.

Major Challenges for Higgs Physics

- The LHC at 14 TeV will probe new physics at and above the TeV scale in a broad sweep
 - Beyond further discoveries at the LHC, the most promising avenue for future exploration is via the Higgs boson properties through high precision measurement.
 - What constitutes a high precision test capable of exploring more physics than a broadband discovery machine like the LHC?
 - Higher precision in the Higgs sector alone is likely to be insufficient, a comprehensive program of order of magnitude improvements in all electroweak observable, the W boson and top quark mass are needed.
- The Higgs boson and the top quark were guaranteed discoveries based on exactly this strategy
 - The basis for the high precision measurements came from the Z factories (over 10^6 Z bosons produced on resonance and studied with polarized beams with ~10⁵ Z bosons).

Some Predicted Higgs Boson Properties

SM Higgs decay branching fractions (M_H=125 GeV) [LHC Higgs Cross Section Group]. The relative uncertainties all appear to be in the several % or more. Where are the high precision predictions against which experimental measurements can be compared?

- Additionally, the total width: Γ_H=4.07 MeV (+4.0-3.9)%
- ttH coupling, HHH self-coupling (and HHHH self-coupling)
- CP even and momentum dependence of couplings known

The Predicament

- The total width of the Higgs boson is not known, and the prediction from theory summing over visible modes is limited by H→bb to ~3%
 - This translates to a theoretical uncertainty on all branching fractions (5 sigma is ~15%)
 - There is not enough precision in the theory predictions to look for new physics beyond what the LHC can already probe
 - − Ratios of branching fractions can yield higher precision, such as in Br(H $\rightarrow \gamma \gamma$)/Br(H \rightarrow ZZ), but a Higgs factory can't do these in any case too few Higgs bosons compared to the LHC
- What is the point of a precision Higgs factory?
 - Any plan for going beyond the LHC has to include a way of creating high precision tests of theory and experiment

A Comprehensive Approach

- Higgs factories create high precision theory and experiment simultaneously, first by increasing the precision by an order of magnitude on electroweak quantities, α_s , and the W and top masses
 - 10⁹ or more Z bosons (91 GeV)
 - Threshold scan for the W mass (161 GeV)
 - Threshold scan for the top quark mass (350 GeV)
 - α_s from the Z data and several c-o-m energies
- Secondly, by improving the constraints on the total width
 - Direct measurement of H >> bb will achieved a precision that supersedes the theory error and pushes down this contribution to sub-percent
 - Total width of the Higgs boson needs to be measured to better than 1% using high statistics from mass recoil method (much larger than considered so far) and line shape scans when possible

Muon Collider

Resonant (s-channel) Higgs production

- Compact ring structure fits at Fermilab
- Beam energy spread of 0.4 MeV on the Higgs resonance, for two experiments on ring produces 80,000 bosons per year
- 10³⁴cm⁻²s⁻¹ luminosity on the Z peak, with increasing luminosity from 1, 3, 6 TeV
- High precision beam energy could be used to determine the most precise top quark mass from a thresholds scan and similary for the W boson pair production threshold
- Will provide the highest precision H→μμ and this
 could have one of the most precise theory predictions

Detector backgrounds

- From secondary particles from beam dumps of offmomentum electrons from muon decay
- Understood to be MeV-scale electron and out of time muons that can be removed with precision timing

Challenging accelerator program

Requires several stages of development (20yrs)

Direct line shape scan of Higgs boson (accurate to 0.2 MeV)

g-2 precession methods for beam energy calibration to 10 keV

Scale of mu collider facility

Muon Collider parameters

	Z	Higgs ¹	W	Тор	Design	Design	Extrap ²	
C of m Energy	91	0.126	161	350	1.5	3	6	TeV
Luminosity	1	0.002	1	0.1-1	1	4	12	$10^{34} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$
Muons/bunch		2			2	2	2	10^{12}
Total muon Power		1.2			7.2	11.5	11.5	MW
Ring circumference		0.3			2.6	4.5	6	km
β^* at IP = σ_z		80			10	5	2.5	mm
rms momentum spread		0.004		0.01?	0.1	0.1	0.1	%
Repetition Rate		30			15	12	6	Hz
Proton Driver power		4			4	3.2	1.6	MW
Muon Trans Emittance		300			25	25	25	μ m
Muon Long Emittance		2			72	72	72	mm

γγ Collider

- Also s-channel production, but the beam energy spread is greater than the line shape width
 - Beams are produced using inverse Compton scattering of high power laser beams off electron beams (or positron beams for e⁺e⁻ linear colliders)
 - Energy recovery linacs can compactly produced the beams necessary (fits anywhere – FNAL, JLab, DESY, CERN,...)
 - High power lasers such as those used for inertial confinement fusion (LIFE) and alternatively FELs provide the photons
- Polarized laser light allows for precision tests of CP violation and the most accurate $H \rightarrow \gamma \gamma$ measurement

SAPPHIRE $\gamma\gamma$ Higgs Factory

SAPPHiRE: Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

LIFE beam line:

- Pulses at 16 Hz
- 8.125 kJ / pulse
- 130 kW average power
- ns pulse width

γγ Higgs Factory

Top Energy	80 GeV	80 GeV	
Turns	3	4	
Magnet ρ	644.75 m	706.65 m	
Linacs (5)	5.59GeV	4.23GeV	
δρ/ρ	6.99x10 ⁻⁴	7.2x10 ⁻⁴	
ϵ_{nx} Growth	1.7μm	1.8µm	

The Story of e⁺e⁻ Colliders

- Began with a paper by Burt Richter, which drew the line (based on reasonable assumptions) on the maximum energy of circular e⁺e⁻ colliders at ~200 GeV, beyond which linear e⁺e⁻ must take over
 - Since that time, the KEK-B factory perfected the concept of dual high-energy beams which allows one ring to top off the other ring at full energy – this, not surprisingly, effectively doubles the maximum energy to ~350 GeV for a 80-100km circular ring
- Linear colliders have been designed to 1 TeV (ILC) and up to 3 TeV (CLIC) using a pair of collinear beams
 - Non-resonance production favors operating at 250 GeV for HZ mass recoil measurements with ~10,000 Higgs bosons per year
 - The Higgs boson measurements get most of their precision from their highest energy operation through VBF (~40,000/year)

ILC (International Linear e⁺e⁻ Collider)

31 km

CLIC - Possible Implementation at CERN

Higgs Production at e⁺e⁻ Colliders

Sub-leading processes - top Yukawa coupling, self-coupling

Higgs Strahlung off top quarks (s-channel)

Double Higgs production in Higgs-Strahlung(s-channel)

Double Higgs production in vector boson fusion (t-channel)

e⁺e⁻ Linear Collider Parameters

ILC Collision rate	Hz	5
Number of bunches		1312
Bunch charge	×10 ¹⁰	2
Bunch separation	ns	554
RMS bunch length	mm	0.3
Electron polarisation	%	80
Positron polarisation	%	30

Positron polarisation %		30			
ILC Centre-of-mass					
energy	GeV	250	350	500	
Electron RMS energy					
spread		0.19	0.16	0.12	
Positron RMS energy					
spread	%	0.15	0.10	0.07	
IP RMS horizontal beam					
size	nm	700	662	474	
IP RMS veritcal beam					
size	nm	8.3	7.0	5.9	
	×10 ³⁴ cm ⁻				
Luminosity	² S ⁻¹	0.75	0.93	1.8	
% luminosity in top 1%					
ΔE/E		84%	79%	63%	
Average energy loss		1%	2%	4%	

TeV

Total pair energy

CLIC Main Parameters

parameter	symbol		
centre of mass energy	$E_{cm}\left[GeV\right]$	500	3000
luminosity	$\mathcal{L}~[10^{34}~ ext{cm}^{-2} ext{s}^{-1}]$	2.3	5.9
luminosity in peak	$\mathcal{L}_{0.01} \ [10^{34} \ \text{cm}^{-2} \text{s}^{-1}]$	1.4	2
gradient	$G\left[MV/m\right]$	80	100
site length	[km]	13	48.3
charge per bunch	N [10 ⁹]	6.8	3.72
bunch length	$\sigma_{\sf z}\left[\mu{\sf m} ight]$	72	44
IP beam size	$\sigma_{\sf x}/\sigma_{\sf y}~[{\sf nm}]$	200/2.26	40/1
norm. emittance	$\epsilon_{x}/\epsilon_{y} [nm]$	2400/25	660/20
bunches per pulse	n _b	354	312
distance between bunches	$\Delta_{b}\left[ns ight]$	0.5	0.5
repetition rate	f _r [Hz]	50	50
est. power cons.	P _{wall} [MW]	271	582

TLEP and VHE-LHC in 80-100km tunnel

injection scheme: SPS+ \rightarrow LHC \rightarrow VHE-LHC too expensive (50 MW power for cryo)

TLEP double ring with top-up injection

supports short lifetime & high luminosity

top-up experience: PEP-II, KEKB, light sources

LEP3 and TLEP

key parameters

luminosity at 90 GeV c.m.

	LEP3	TLEP
circumference	26.7 km	80 km
max beam energy	120 GeV	175 GeV
max no. of IPs	4	4
luminosity at 350 GeV c.m.	_	$0.7x10^{34}cm^{-2}s^{-1}$
luminosity at 240 GeV c.m.	10 ³⁴ cm ⁻² s ⁻¹	5x10 ³⁴ cm ⁻² s ⁻¹
luminosity at 160 GeV c.m.	5x10 ³⁴ cm ⁻² s ⁻¹	2.5x10 ³⁵ cm ⁻² s ⁻¹

at the Z pole repeating LEP physics programme in a few minutes.20

2x10³⁵ cm⁻²s⁻¹

 $10^{36}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Comparison of ZH Higgs production rates for linear and circular e⁺e⁻

	ILC-250	LEP3-240	TLEP-240
Lumi / IP / 5 years	250 fb ⁻¹	500 fb ⁻¹	2.5 ab ⁻¹
# IP	1	2 - 4	2 - 4
Lumi / 5 years	250 fb ⁻¹	1 - 2 ab ⁻¹	5 - 10 ab ⁻¹
Beam Polarization	80%, 30%	_	-
L _{0.01} (beamstrahlung)	86%	100%	100%
Number of Higgs	70,000	400,000	2,000,000
Upgradeable to	ILC 1TeV CLIC 3 TeV ?	HE-LHC 33 TeV	VHE-LHC 100 TeV

Higgs Factories

- The only two resonance production methods for the Higgs boson $(\mu^+\mu^-$ and $\gamma\gamma)$ involve technologies that we have not developed yet
 - But we do believe they will be developed eventually.
- The other directions for high precision Higgs studies involve accelerators that are themselves new energy frontier machines or in some way are designed to expand into new energy frontier machines
 - Since these machines use non-resonant processes, the Higgs boson measurements get most of their precision from their highest energy operation
 - By choosing these machine technologies we are effectively choosing the future direction of the energy frontier before having decisive constraints to guide us.
 - That might be the only answer, but it would choose between:
 - linear e⁺e⁻ up to 1 TeV or 3 TeV here there are two accelerator technologies
 - circular e⁺e⁻ up to 240 GeV (350 GeV) followed by pp at 33 TeV (100 TeV) where the 33 TeV program is HE-LHC in the existing LEP tunnel
 - And it should be noted that $\mu^+\mu^-$ could be extended up to at least 3 TeV
 - And that $\gamma\gamma$ could be included in a linear e⁺e⁻ energy frontier machine

Summary

- A precision search for new physics in the Higgs sector requires precision theory prediction to compare against
 - There is not sufficiency precision in the Higgs sector without improvements in electroweak precision quantities, α_s , the W boson and top quark masses, or, alternatively,
 - a precision measurement of H→bb to supersede the theory uncertainty on the total width or measurements of the total width to better than 1% such as from high statistics recoil mass method and possibly a line shape scan when possible
- The potential future directions for Higgs physics are being amply fueled by impressive new capabilities in accelerator and detector technologies
 - The list of alternatives is understood
- There may be a case for a new machine at this time, but what is clear is that the enabling technologies need continued and dedicated pursuit, and that:
 - Potential discoveries at the 14 TeV LHC is the most immediate and direct route to new discoveries at this time

```
ILC = Complete Higgs factory program (1 TeV)
             - (more precision needed on total width)
CILC = ILC + HHH + 3 TeV
mu collider = ILC + higher rates + s-channel line shape + HHH
             + over 3 TeV + H\mu\mu + higher precision beam energy
             - (detector backgrounds) - (low beam pol)
LEP3 = ILC + higher rates + 33 TeV HE-LHC (+HHH+H\gamma\gamma)
TLEP = ILC + much higher rates + 100 TeV VHE-LHC (+ttH+HHH+H\gamma\gamma)
Possible Linear Combinations: (some one will do \gamma\gamma collider)
   ILC/CLIC/mu collider + 33 TeV LHC
    TLEP + 100 TeV LHC
```