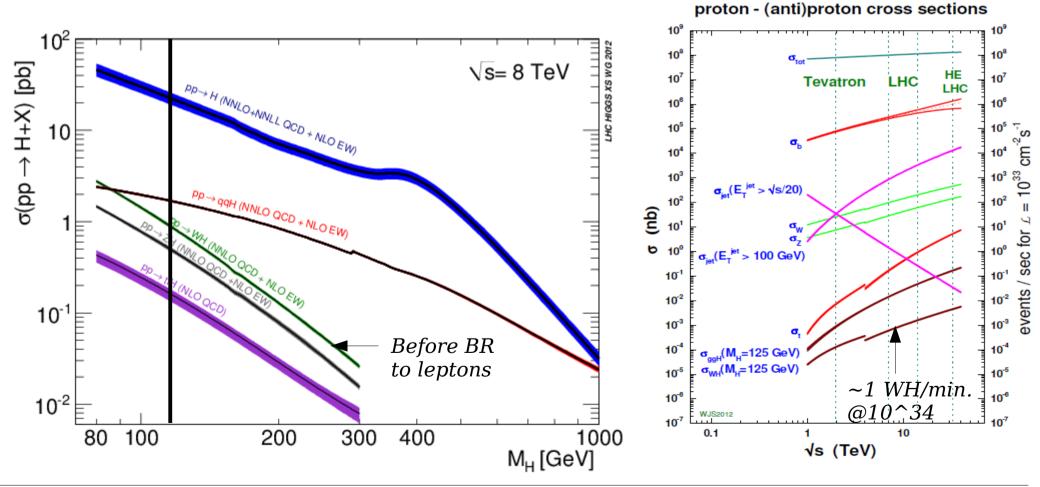
Some Searches for New Physics with the Higgs

Andy Haas

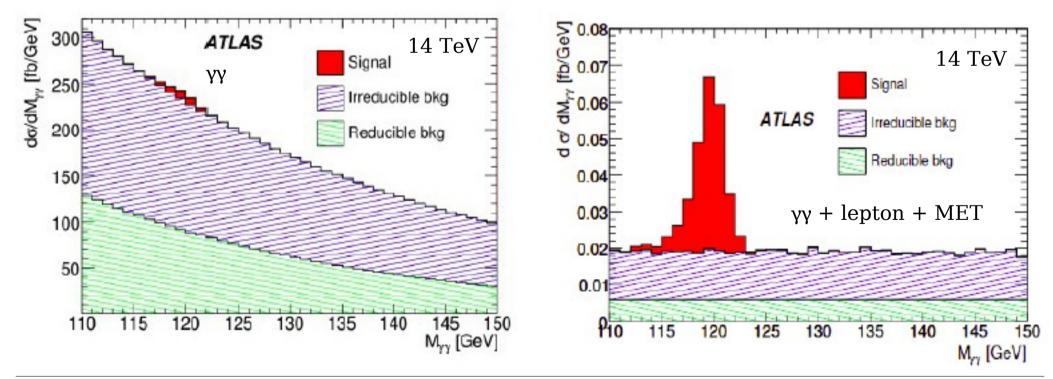
New York University


Higgs Physics After Discovery PCTS April 25, 2013

SM Higgs Production at the LHC

- LHC has mainly measured the gg \rightarrow H production
 - ~3σ evidence for VBF from ATLAS
- Going forward we can start to study the rarer production modes *(New grad students won't see plots vs. m_H anymore?!)*

Andy Haas

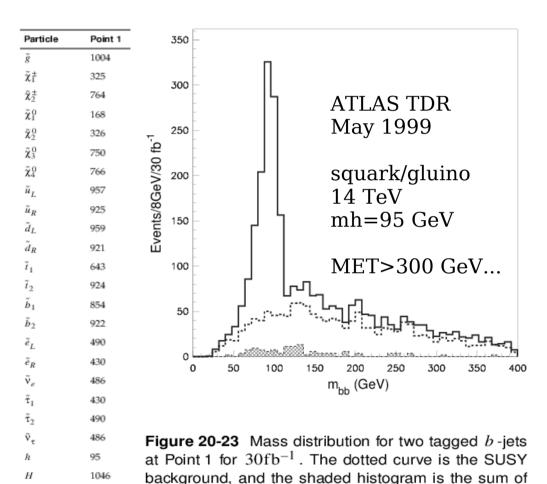

Higgs $(\rightarrow \gamma \gamma) + X$

- With 26/fb, can start to see modes with smaller cross-sections!
 - WH($\rightarrow \gamma \gamma$) : lepton + MET + $\gamma \gamma$ (hadronic decay channels dirtier...)
 - $ttH(\rightarrow\gamma\gamma)$: lepton + MET + b(b) + $\gamma\gamma$
 - $ZH(\rightarrow\gamma\gamma)$: 2-lepton + $\gamma\gamma$, MET + $\gamma\gamma$
- If BR($H \rightarrow \gamma \gamma$) is enhanced, these channels may be enhanced
 - Important to measure many production channels to know whether enhancement is due to production rate or decay BR
 - Measure Higgs couplings to W/Z/t in orthogonal channel
- Sensitive to new physics directly low SM "Higgs background" !
 - SUSY can produce Higgs in decay chains, associated with leptons and/or MET and/or b-jets (and countless other models of new physics)
 - Keep selections as inclusive as possible!
 - Important to have BSM benchmarks in these channels

W + Higgs $(\rightarrow \gamma \gamma)$

• Clean!

- S/B = -2 compared to -0.02 for inclusive analysis
- But low rate (in SM)
 - Events of WH($\rightarrow\gamma\gamma$) in 30/fb: ~0.8pb * 30/fb * (20% * 0.5) * (0.25% * 0.6) * (80% * 0.7) = ~2 events lepton*eff $H \rightarrow \gamma\gamma$ * eff MET * eff
 - See 4, expect 1.5 bkgd. events $\rightarrow \sim 2\sigma$ expected sensitivity to SM WH


This would have been nice

1044

1046

A H[±]

- Large BR $x_2^{\ 0} \rightarrow h x_1^{\ 0}$: "Could discover Higgs in SUSY decays"
- Unfortunately, it didn't turn out this way...
- But, the corollary is still true: "Could discover SUSY using Higgs decays" !
- Still possible that ~10% (?) of Higgs production is through SUSY production and decay!

all Standard Model backgrounds.

New Physics in the "WH" channel

- Could also have additional non-SM production !
- $pp \rightarrow x_1^{+} x_2^{-0} (\rightarrow G W^{+} G h)$ could be ~1 pb @ 8TeV
 - comparable to SM WH rate!
- $pp \to x_1^{+} x_2^{0} (\to x_1^{0} W^{+} x_1^{0} h)$
 - dominant x_2^{0} BR for the Bino LSP case with heavy SUSY scalars

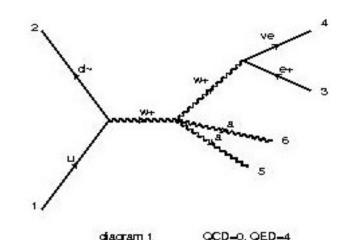
"Mini-split", Craig, Domopolos, arXiv:1210.0555

- Could also have softer lepton, less MET, lower mT(MET, lepton), etc. from new physics, e.g. $m(x_1^{+}) - m(x_1^{-0}) < m(W^+)$

- Study "lepton + MET + $H(\rightarrow \gamma\gamma)$ " : keep cuts as inclusive as possible!

- Generally expect more MET and larger mT compared to WH
- Will study "grid" of $m(x_2^0)=m(x_1^+)$, $m(x_1^0)$

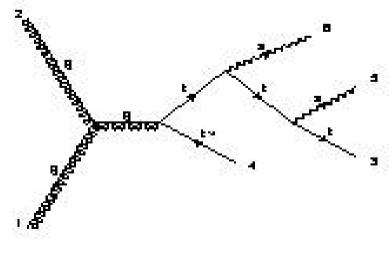
W + Higgs $(\rightarrow \gamma \gamma)$ analysis


- Standard yy selections, as in inclusive analysis
- 1 Tight electron within acceptance, pT>15 GeV
 0r
 1 Tight muon within acceptance, pT>10 GeV

1 Tight muon within acceptance, pT>10 GeV (separate channel for >1 lepton events!)

- Calorimeter and track isolation (corrected for pileup)
- MET>40 GeV (not a lot of MET these days!)
 - Sensitive to primary vertex, calibrations, and pileup suppression!
 - Use same primary vertex for photon pT as pileup corrections and lepton
 - Same photon and lepton object energy corrections in MET calculation
- Remove events with m(ey) near m(Z), remove $Z\gamma \rightarrow ee\gamma$, $e \rightarrow \gamma$ fake
 - some additional photon selections to reduce $e \rightarrow \gamma$ fake (conversions)
- Not cutting on mT(l,MET)!
- Using minimal cut on pT and MET needed to reduce background...
 - Would cut harder to optimize SM WH sensitivity

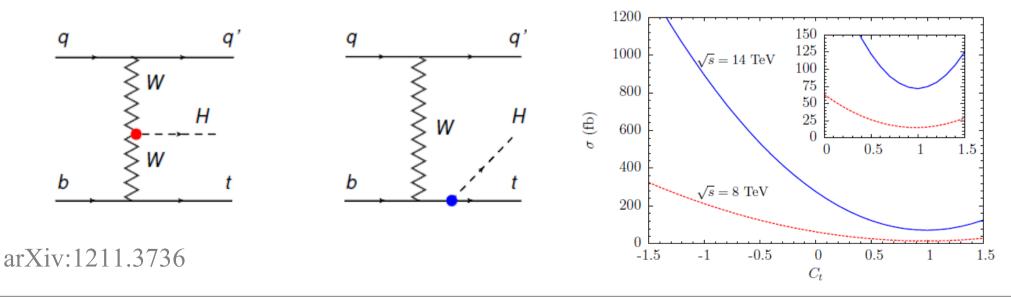
W + Higgs $(\rightarrow \gamma \gamma)$ analysis


- Interesting (non-Higgs) SM backgrounds
 - Irreducible W+γγ (ISR)
 - W+ γ (+FSR γ from lepton)
 - W (+FSR γ from lepton + fake γ)
 - Ditto for ttbar

- $Z/Z\gamma$ (+e $\rightarrow\gamma$ fake or FSR γ from lepton + fake MET)
- (γγ, real or fake) * fake lepton * fake MET
 - Measure in data low-MET region, scale to MET>40 GeV region determined from non-isolated leptons
 - Turns out to be small!
- Total of just ~6 events expected in $m(\gamma\gamma)$ signal region (120-130 GeV)
- ~2 events expected from SM WH, up to ~12 events expected from SUSY!
- Also include MET>150 GeV category: ~0.1 SM background, ~0.1 events from SM WH, ~1 event from SUSY

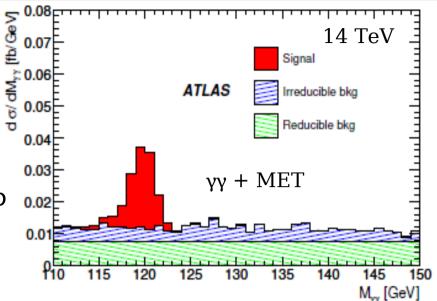
tt + Higgs $(\rightarrow \gamma \gamma)$

- Baseline analysis is lepton + MET + b-jet(s) + γγ ("WH analysis + b-jet(s)")
 - Also studying all-hadronic channel
 - Di-lepton channel is ~9x smaller
- ttH cross-section is ~4x smaller than WH
 - Expect ~0.5 SM ttH($\rightarrow\gamma\gamma$), lepton+MET+b+ $\gamma\gamma$, events
- Backgrounds also small from ttbar and W, just ~0.5 events expected in m(γγ) signal region (120-130 GeV)
- Not very sensitive to SM ttH yet, but great place to look for new physics...


New Physics in the "ttH" channel

• FCNC $t \rightarrow ch$

ttbar \rightarrow tch \rightarrow Wbch \rightarrow lepton+MET+b+c+h($\rightarrow\gamma\gamma$)


BR(t \rightarrow ch)~1% is consistent with current limits

- Gives ~10 events expected in lepton+MET+b+γγ channel!
- thj, enhanced by 15x by negative th coupling
 - Gives ~2 events expected in lepton+MET+b+γγ channel!

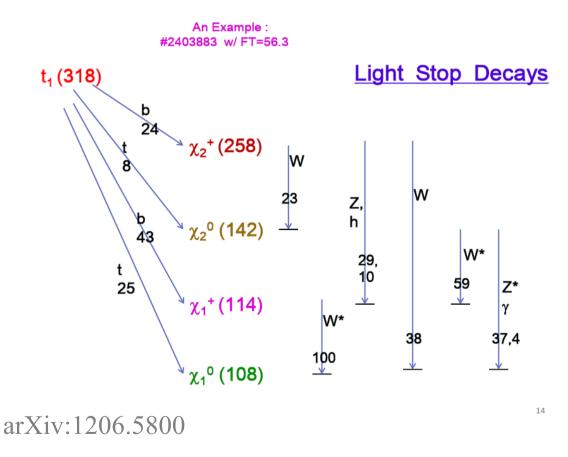
Z + Higgs $(\rightarrow \gamma \gamma)$

- MET + γγ
 - For SM ZH, require MET>80 GeV
 - Almost as clean as $WH(\rightarrow\gamma\gamma)$
 - Rate about 2x smaller: just ~1 SM ZH event expected in 30/fb

- 2-lepton + γγ
 - SM ZH lives in low-MET, $ee/\mu\mu$, near mZ
 - Just ~0.2 ZH events expected, and 2 events of (Z) background!
 - But interesting BSM-sensitive channels:
 - med/high MET
 - eµ
 - off Z peak
 - Include $m(ll\gamma) \sim m(Z)$ veto to kill FSR

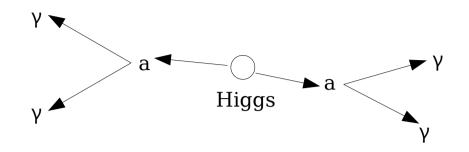
New Physics in the "ZH" channels

- Off Z-peak signals?
 - ~1 background event expected (mainly from Z/DY) (and no SM H)
 - Off-shell Z* decays $(x_3^0 \rightarrow Z^* x_2^0)$?
 - $Z' \rightarrow Z^*$ h decays ?
- eµ is very clean!
 - Just ~0.01 of SM ttH and ttbar background total expected
 - Great place to look for new physics signals...


hh production

- Double Higgs production is very small in the SM
- Makes it hard to measure the Higgs self-coupling (sLHC)
- Look on the bright side: very low di-Higgs background to BSM! :)
 - Can be strongly enhanced by new physics arXiv:1208.1542
 - $h(\rightarrow bb) + h(\rightarrow \gamma\gamma)$
 - Look for bump in m(bb) ? And m(bbγγ)?
 - Backgrounds with 2 b-jets are not so large
 - About ~5 events expected in $m(\gamma\gamma)$ signal region for 30/fb, pT(b)>20 GeV
- Best channel / selections to see hh?
 - Maybe $h(\rightarrow WW) + h(\rightarrow WW) \rightarrow tri-lepton?$
- Benchmark model : $H \rightarrow hh$, mH=260 GeV (2HDM), 3.6pb@8TeV
 - Gives 20 events in l+MET+γγ channel!
 - Gives 0.5 events in the eµ+MET+ $\gamma\gamma$ channel, with just 0.01 SM background (tt and ttH)

Less minimal new physics in h+X channels


- In general can have a more complicated spectrum / decays

 - Rate could be ~1pb*.24*0.1*2 = 50fb*0.25% *eff ~ **2 events in 30/fb**
 - Or larger if BR $h(\rightarrow\gamma\gamma)$ is enhanced or $\sim t$ is lighter!

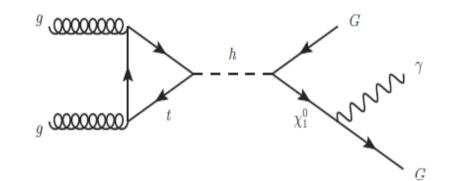
off-shell Z* decays on-shell Z decays 3rd photon high pT lepton soft lepton large MET

Non-SM Higgs Production / Decay

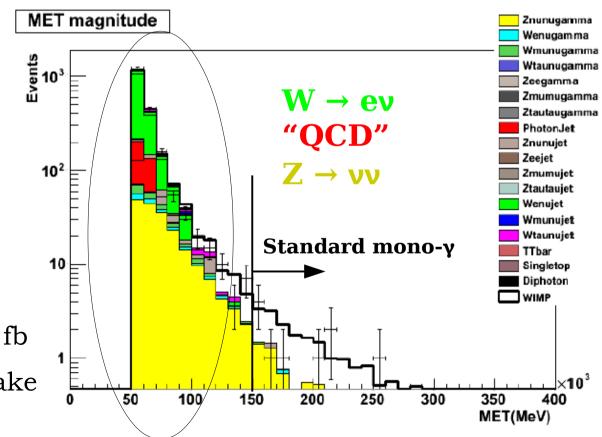
- $H \rightarrow a a \rightarrow \gamma \gamma \gamma \gamma$
 - For m(a)<~400 MeV, photons not isolated (ATLAS-CONF-2012-079)
 - Study range from 400 MeV < m(H)/2, ≥3 isolated photons
- Final-state with ≥3 photons not previously studied?!
- Commissioned new 3-photon trigger (pT=15,15,15 GeV) for 2012
 - ~50% more efficient than standard pT=24,22 GeV trigger (pT=20,20 GeV was unprescaled in 2011...)

Non-SM Higgs Production / Decay

- Offline require ≥3 tight, isolated photons, pT>15 GeV (or trig. thresh.)
- Look for excess rate, and/or invariant mass bumps
- Working on data-driven understanding of fake-photon rate
 - Loose \rightarrow tight rate in di-photon data/MC
 - Isolation studies in data/MC


Rough numbers for 3 photons in 0.5/fb:

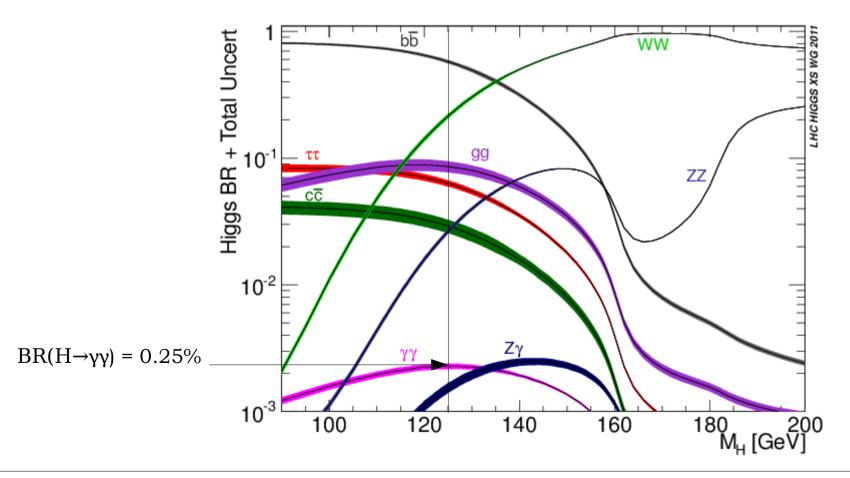
-
4.22 +- 1.08
2.08 +- 0.49
3.10 +- 0.51
1.71 +- 0.41
1.42 +- 0.01
1.33 +- 0.90
13.85 +- 1.63


- ~600 background events in 30/fb with 3 photons
- Just ~1 background event in 30/fb with ≥4 photons

Non-SM Higgs Production / Decay

- Higgs (\rightarrow G $x_1^0 \rightarrow$ G γ G)
 - $m(H)/2 < m(x^0) < m(H)$
 - Could be ~10% of Higgs decays?
 ~25,000 events in 30/fb ?! arXiv:1203.4563

- Mono-photon + MET
 - $pT(\gamma) \sim 40 \text{ GeV}$
 - Use γ+MET trigger
 with 40+60 threshold
- Large background from $W \rightarrow e \rightarrow \gamma$ -fake
 - ~100,000 events in 30/fb
 - Need specialized $e \rightarrow \gamma$ -fake rejection algorithm!


Conclusions

- $H(\rightarrow\gamma\gamma)$ is a good channel for studying "W/Z/tt" + H production
 - Low backgrounds, reasonable BR (maybe larger), and *no inherent MET*
- With 30/fb, can start to see:
 - <u>Worst case:</u> evidence for SM production / measure couplings directly
 - <u>Even better</u>: see evidence for extra production from BSM physics!
- Sensitive to many new Higgs signals
 - $x_2^{0} (\rightarrow x_1^{0} h), t \rightarrow ch, thj (C_t=-1), Z' \rightarrow Z^* h, ...$
- And non-SM Higgs decay modes:
 - hh, h(\rightarrow 4 γ), h(\rightarrow γ +MET), ...
- Many channels to cover and first time such analyses attempted!
- Hope for results later this year...
- With 100/fb@13 TeV, these channels become even more important!

Backup

SM Higgs Decays

- Measure bb, $\tau\tau$, WW, ZZ, $\gamma\gamma$ (and later Z γ and $\mu\mu$?) at the LHC
- γγ has reasonable rate (no BR to leptons), good mass resolution, decent S/B, and no MET

Andy Haas