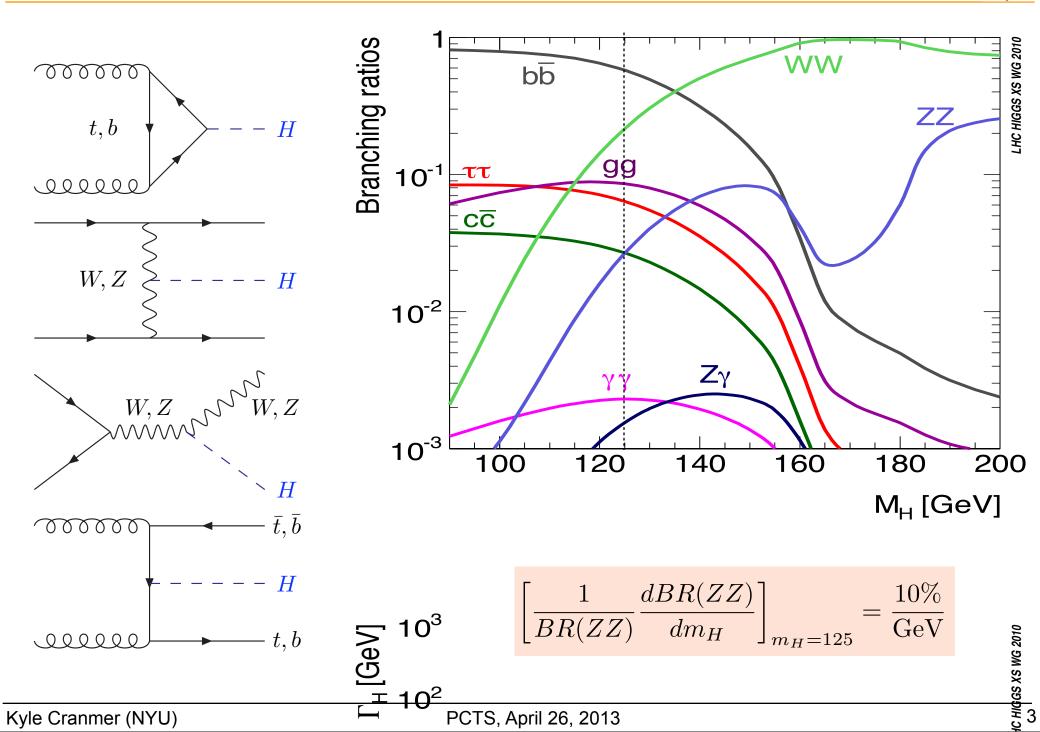
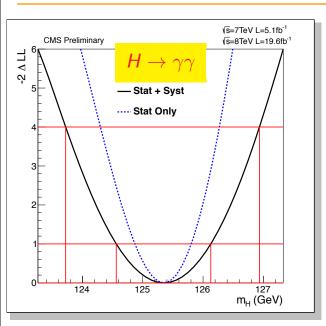
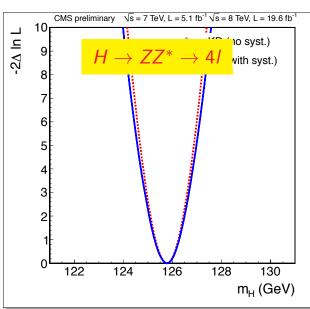
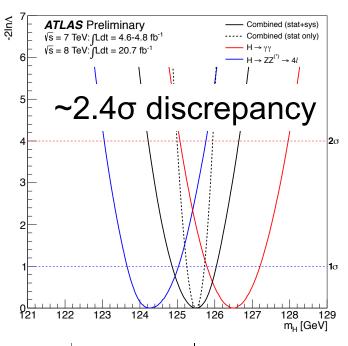

Higgs Couplings @ the LHC

New York University

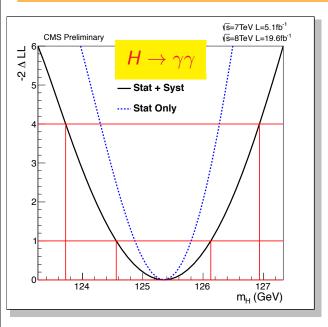

Prospects for the end of the year and beyond

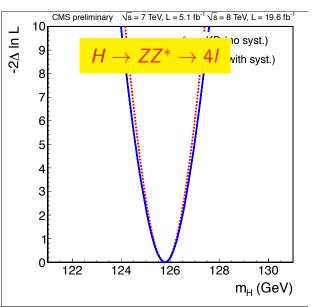

Standard Model Higgs Properties



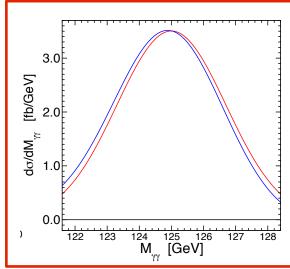

- Mass measurement

$$m_X = 125.4 \pm 0.5 \; (stat) \pm 0.6 \; (syst) \; GeV \qquad m_X = 125.8 \pm 0.5 \; (stat) \pm 0.2 \; (syst) \; GeV$$
 Mass from $H \to \tau\tau \; \; (m_X = 120^{+9}_{-6}(stat) \pm 4(sys) \; GeV) \; consistent$




Combined mass:

$$125.5 \pm 0.2 (\mathrm{stat})^{+0.5}_{-0.6} (\mathrm{sys}) \text{ GeV}$$

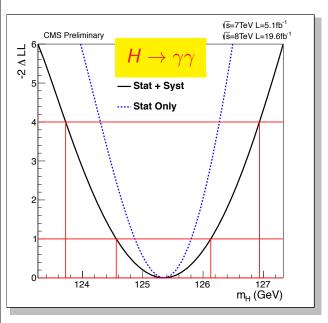

Mass measurement

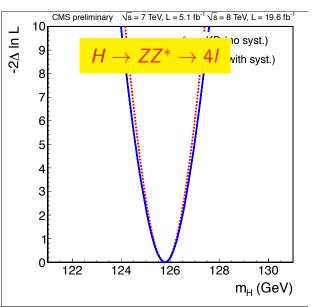
$$m_X = 125.4 \pm 0.5 \; (stat) \pm 0.6 \; (syst) \; GeV \qquad m_X = 125.8 \pm 0.5 \; (stat) \pm 0.2 \; (syst) \; GeV$$

Mass from $H \to \tau \tau \; \; (m_X = 120^{+9}_{-6}(stat) \pm 4(sys) \; GeV) \; consistent$

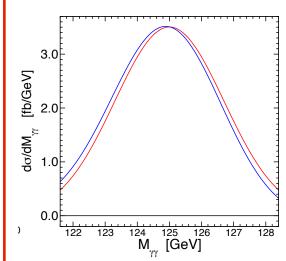
Dixon & Siu: hep-ph/0302233 σ change due to (2-loop) interference of continuum

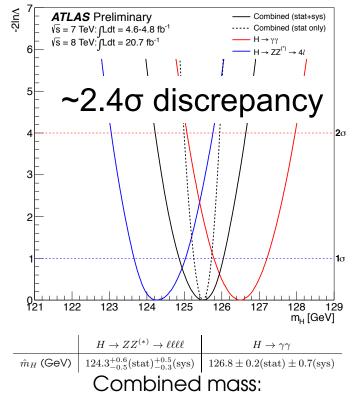
S. Martin arXiv:1208.1533 shift of mass peak ~100 MeV (assuming SM Higgs)




Combined mass:

$$125.5 \pm 0.2 (\mathrm{stat})^{+0.5}_{-0.6} (\mathrm{sys}) \; \text{GeV}$$

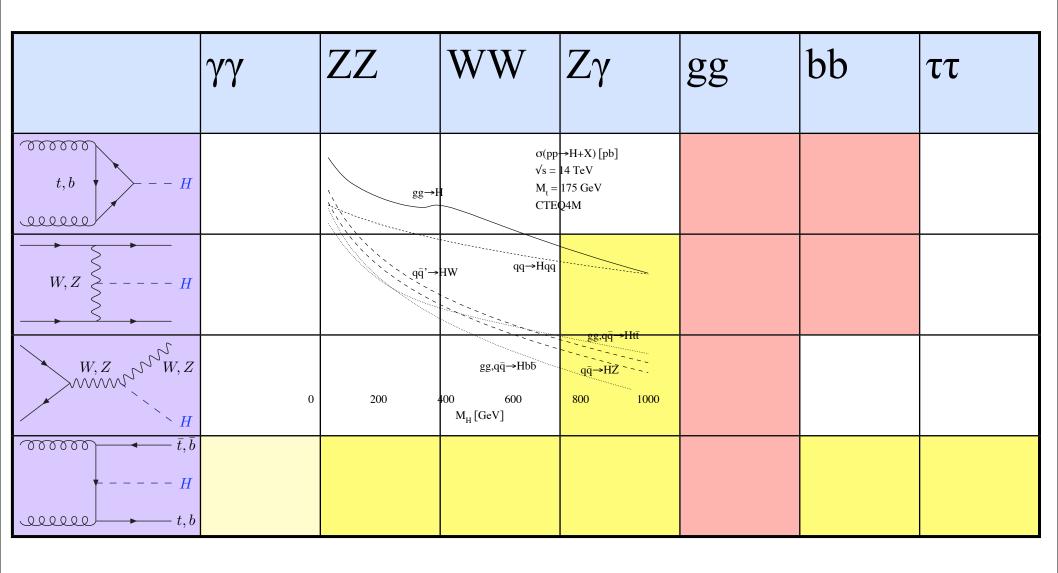

Mass measurement



$$m_X = 125.4 \pm 0.5 \; (stat) \pm 0.6 \; (syst) \; GeV ~~ m_X = 125.8 \pm 0.5 \; (stat) \pm 0.2 \; (syst) \; GeV$$
 Mass from $H \to \tau \tau ~~ (m_X = 120^{+9}_{-6} (stat) \pm 4 (sys) \; GeV)$ consistent

Dixon & Siu: hep-ph/0302233 σ change due to (2-loop) interference of continuum

S. Martin arXiv:1208.1533 shift of mass peak ~100 MeV (assuming SM Higgs)



 $125.5 \pm 0.2(\mathrm{stat})^{+0.5}_{-0.6}(\mathrm{sys})$ GeV

Does this give a handle on total width or complex phases from new physics?

Overview of the channels

done

not yet

difficult

Details

Channels are sub-divided to enhance sensitivity either for experimental reasons or take advantage of production features

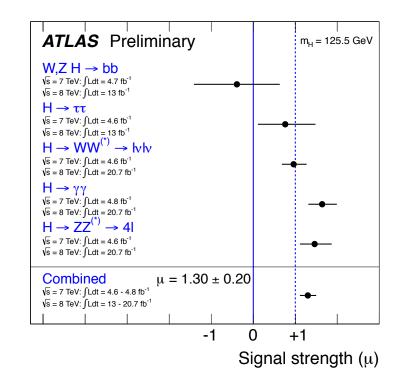
Higgs Boson Decay	Subsequent Decay	Sub-Channels	$\int L \mathrm{d}t$ [fb ⁻¹]	Ref.			
$2011 \sqrt{s} = 7 \text{ TeV}$							
$H \to ZZ^{(*)}$	$ZZ^{(*)}$ 4 ℓ {4 e , 2 e 2 μ , 2 μ 2 e , 4 μ , 2-jet VBF, ℓ -tag}			[8]			
$H o \gamma \gamma$	_	10 categories $\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\}$	4.8	[7]			
$H \to WW^{(*)}$	$\ell \nu \ell \nu$	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	4.6	[9]			
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	4.6				
H o au au	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[10]			
$\Pi \to t t$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6				
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}\$	4.6				
$VH \rightarrow Vbb$	$W o \ell \nu$	$p_{\mathrm{T}}^{\hat{W}} \in \{<50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[11]			
	$Z \to \ell \ell$	$p_{\mathrm{T}}^{\mathrm{Z}} \in \{ < 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV} \}$	4.7				
	$2012 \sqrt{s} = 8 \text{ TeV}$						
$H \to ZZ^{(*)}$	4 ℓ {4e, 2e2 μ , 2 μ 2e, 4 μ , 2-jet VBF, ℓ -tag}}		20.7	[8]			
$H o \gamma \gamma$	- 14 categories $\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\} \oplus \{\ell\text{-tag}, E_{\mathrm{T}}^{\mathrm{miss}}\text{-tag}, 2\text{-jet V}\}$			[7]			
$H \to WW^{(*)}$	$\ell \nu \ell \nu$	$\langle \ell v \rangle $ {ee, e\mu, \mu e, \mu\mu} \le \{0\text{-jet, 1-jet, 2-jet VBF}}		[9]			
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	13				
H o au au	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13	[10]			
$H \rightarrow t t$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13				
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}\$	13				
$VH \rightarrow Vbb$	$W o \ell \nu$	$p_{\mathrm{T}}^{W} \in \{<50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}\$	13	[11]			
	$Z \to \ell \ell$	$p_{\mathrm{T}}^{\mathrm{Z}} \in \{<50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13				

Details

Channels are sub-divided to enhance sensitivity either for experimental reasons or take advantage of production features

Higgs Boson Decay	Subsequent Decay	Sub-Channels	$\int L \mathrm{d}t$ [fb ⁻¹]	Ref.			
	$2011 \sqrt{s} = 7 \text{ TeV}$						
$H \to ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, \frac{2-\text{jet VBF}, \ell-\text{tag}}{2}\}$		[8]			
$H o \gamma \gamma$	_	$10 \text{ categories} $ $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{ conversion}\} \oplus \{2\text{-jet VBF}\}$	4.8	[7]			
$H \rightarrow WW^{(*)}$	$\ell \nu \ell \nu$	-,					
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	4.6				
H o au au	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[10]			
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6				
	$Z \rightarrow \nu \nu$	$E_{\text{T}}^{\text{miss}} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6				
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\mathrm{T}}^{W} \in \{<50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}\$	4.7	[11]			
	$Z \to \ell \ell$	$p_{\rm T}^Z \in \{<50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}\$	4.7				
	$2012 \sqrt{s} = 8 \text{ TeV}$						
$H \to ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2-\frac{1}{10000000000000000000000000000000000$	20.7	[8]			
$H o \gamma \gamma$	- 14 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\} \oplus \{\ell\text{-tag}, E_{\text{T}}^{\text{miss}}\text{-tag}, 2\text{-jet V}\}$		20.7	[7]			
$H \rightarrow WW^{(*)}$	$\ell \nu \ell \nu$	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	20.7	[9]			
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{\text{1-jet, 2-jet, } p_{\text{T},\tau\tau} > 100 \text{ GeV, } VH\}$	13				
H o au au	$ au_{ m lep} au_{ m had}$	$\{e,\mu\}\otimes\{0\text{-jet},\ 1\text{-jet},\ p_{\mathrm{T},\tau\tau}>100\ \mathrm{GeV},\ 2\text{-jet}\}$	13	[10]			
$H \rightarrow t t$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13				
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}\$	13				
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\mathrm{T}}^{\mathcal{W}} \in \{ < 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV} \}$	13	[11]			
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{<50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13				

Signal strength

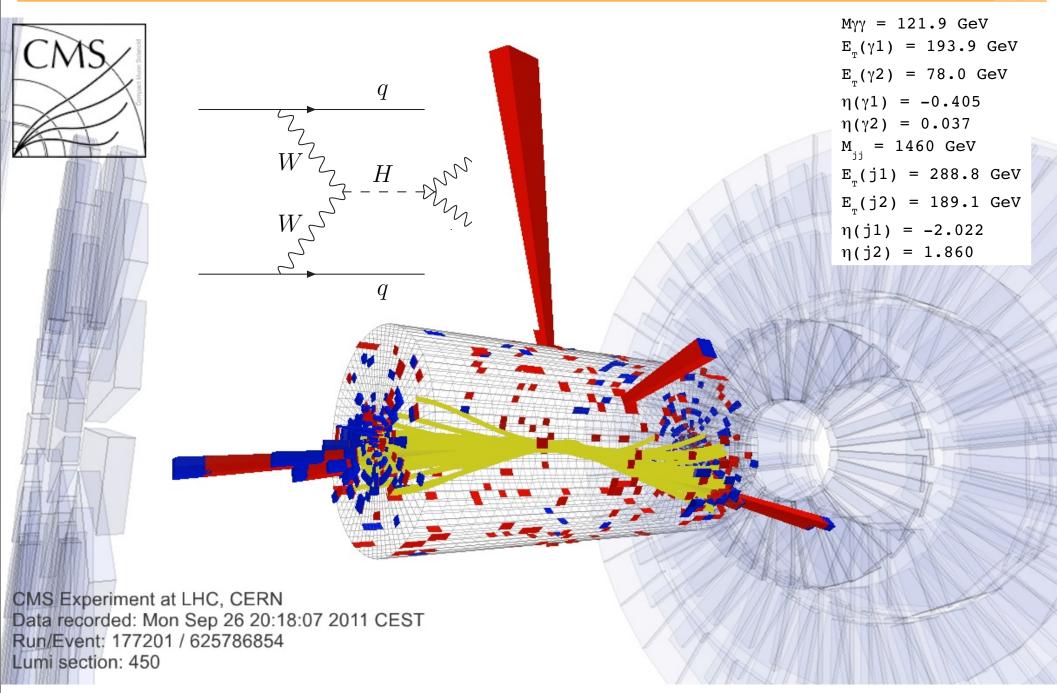

Global combined µ scales all modes w.r.t. SM expectation

good for discovery, but a blunt instrument for probing deviations

Several goodness-of-fit tests - depend on #d.o.f. considered

- Individual μ_i compatible with combined $\hat{\mu}$ at 13% (and μ =1 at 8%)
- Combined $\hat{\mu}$ compatible with $\mu = 1$ within 9%

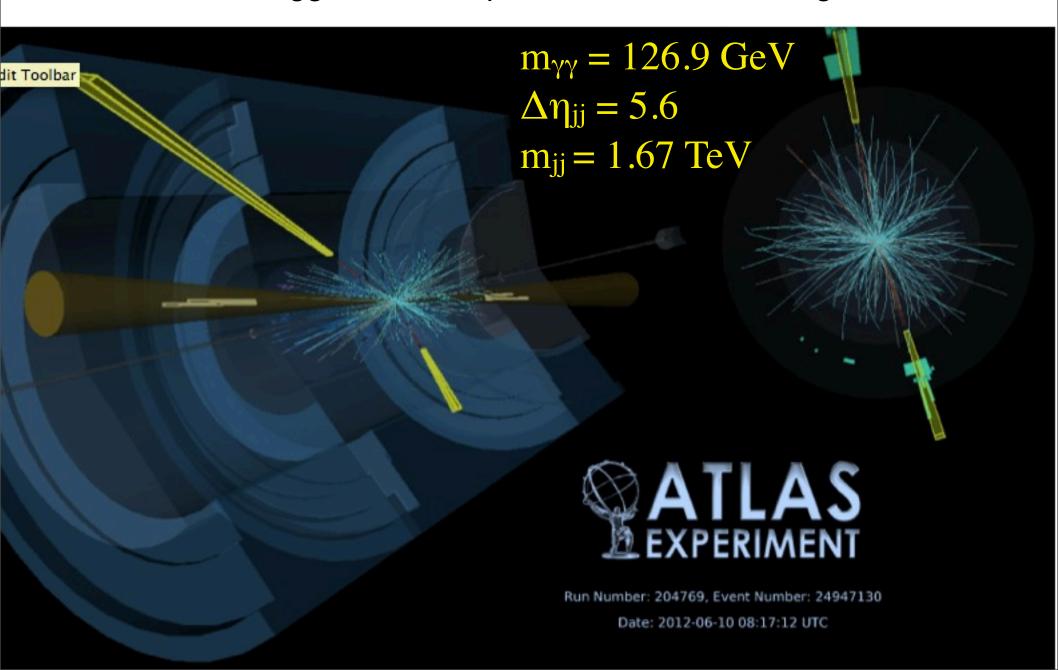
_	Higgs Decay Mode	$\hat{\mu}$ (m_H =125.5 GeV)
_	$VH \rightarrow Vbb$	-0.4 ± 1.0
	H o au au	0.8 ± 0.7
A	$H \to WW^{(*)}$	1.0 ± 0.3
_	$H \rightarrow \gamma \gamma$	1.6 ± 0.3
<u> </u>	$H \to ZZ^{(*)}$	1.5 ± 0.4
_	Combined	1.30 ± 0.20
_		



$$\mu_{\text{obs}} = 1.65^{+0.24}_{-0.24}(\text{stat})^{+0.25}_{-0.18}(\text{syst})$$

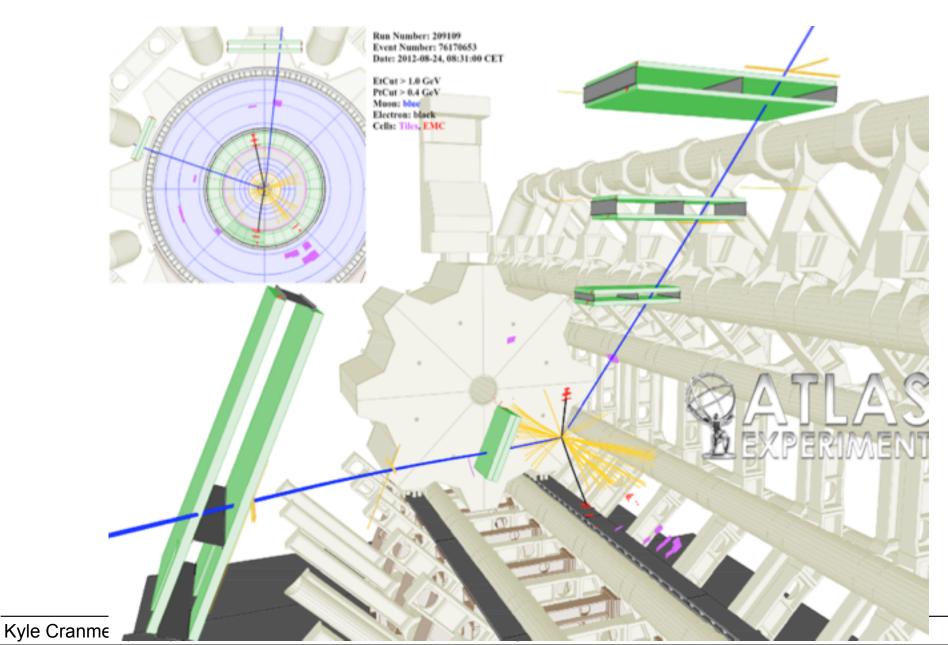
 $\mu_{\rm obs} = 1.01 \pm 0.21 \, ({\rm stat.}) \pm 0.19 \, ({\rm theo. \, syst.}) \pm 0.12 \, ({\rm expt. \, syst.}) \pm 0.04 \, ({\rm lumi.})$

VBF 2-photon candidate



VBF 2-photon candidate

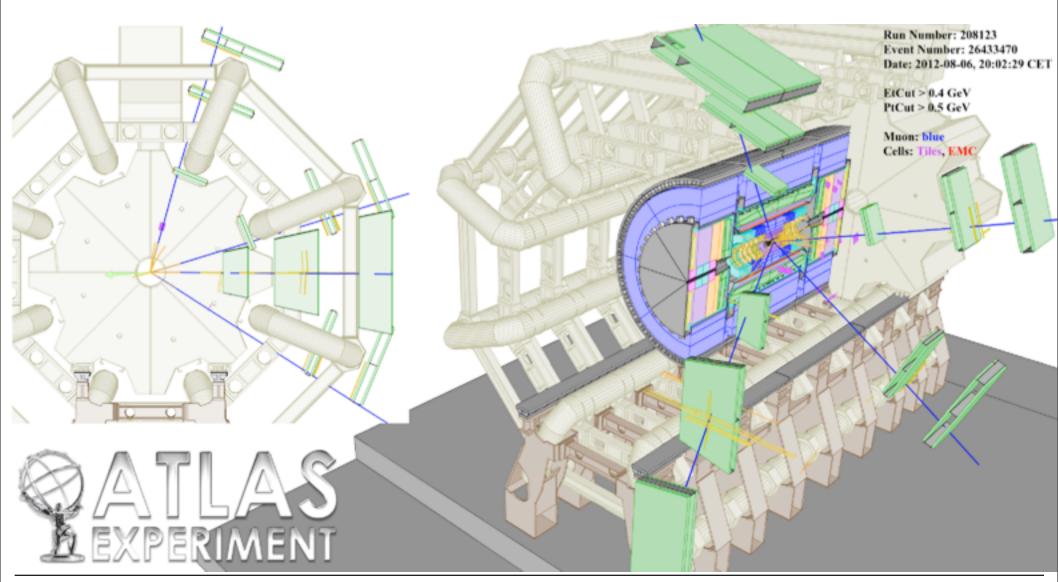
About 12 Higgs events expected in VBF-like categories



VBF H→ 4I candidate

no candidates in lepton-tagged categories

1 VBF candidate observed (m_{4l}=123.5 GeV) [0.7 expected, S/B~5]



Our SM bias?

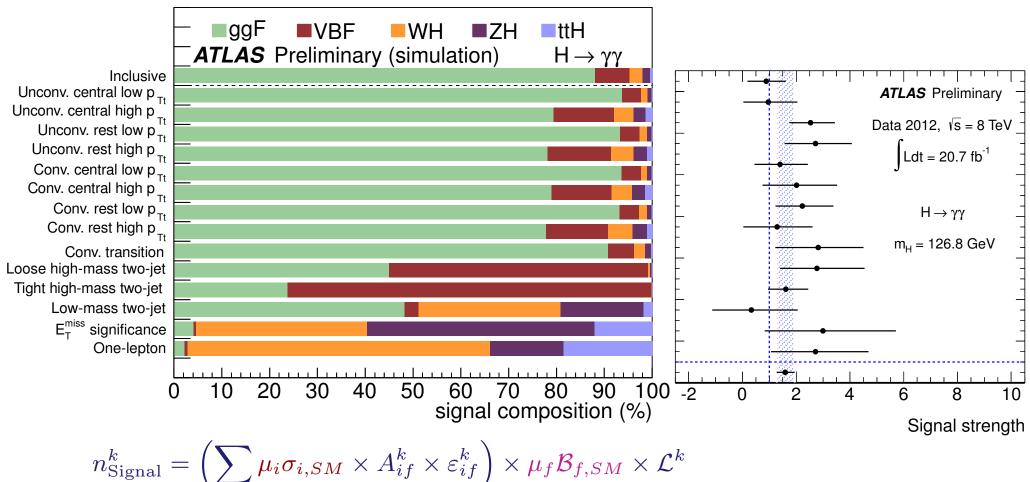
ATLAS does not have a $Z(\rightarrow vv) H(\rightarrow 4l)$ b/c sensitivity in SM is small

m_{4l}=123.5 GeV, ETmiss=121.3 GeV

Model-independent vs. model-specific approach

Model-independent approach, single channel results: Signal strength parameters μ_i for separate search channels

⇒ Most robust information for testing different models


Interpretation is nevertheless not trivial:

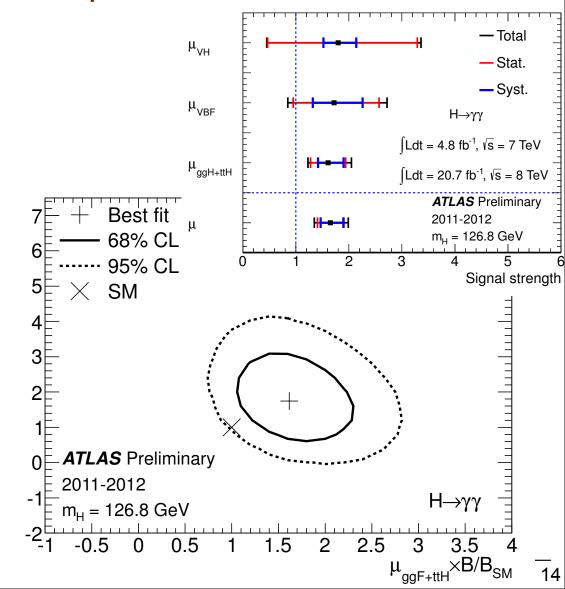
- Assume same acceptances and efficiencies as in the SM?
- How to disentangle different production modes?

Correlations?

"You think you know what you want...

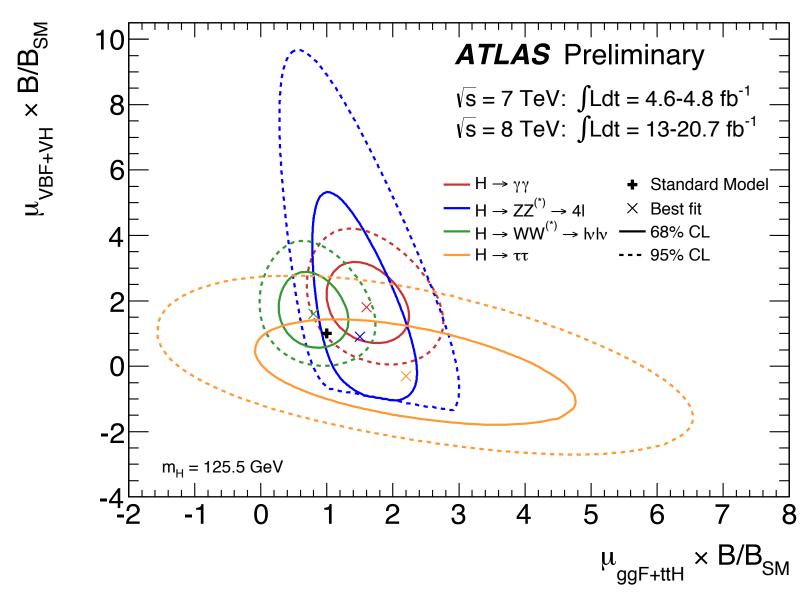
$$n_{ ext{Signal}}^{2} = \left(\sum \mu_{i} \sigma_{i,SM} \times A_{if}^{2} \times \varepsilon_{if}^{2}\right) \times \mu_{f} \mathcal{B}_{f,SM} \times \mathcal{L}^{2}$$

- $\sigma_i = \mu_i \sigma_{i,SM}$ is the i^{th} hypothesized production cross section
- $\mathcal{B}_f = \mu_f \mathcal{B}_{f,SM}$ is the f^{th} hypothesized branching fraction
- Detector acceptance A_{if}^k , reconstruction efficiency ε_{if}^k , and integrated luminosity \mathcal{L}^k are fixed by above assumptions


... let me tell you what you want"

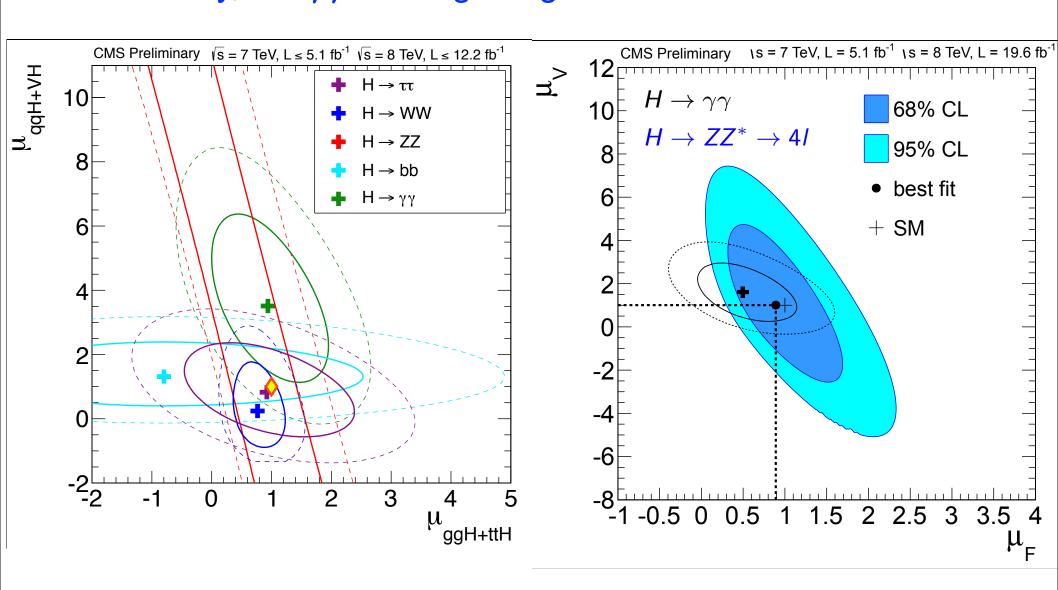
The systematics are correlated, which leads to a non-trivial migration of events between categories.

We can disentangle the different production modes


Systematic uncertainties	Category		Value(%)		Constraint
Underlying Event	Tight high-mass two-jet	ggF: ±8.8	VBF: ±2.0	VH, ttH: ±8.8	Log-normal
	Loose high-mass two-jet	ggF: ±12.8	VBF: ±3.3	VH, ttH: ±12.8	
	Low-mass two-jet	ggF: ±12	VBF: ±3.9	VH, ttH: ±12	
Jet Energy Scale	Low p_{Tt}	ggF: -0.1	VBF: -1.0	Others: -0.1	Gaussian
•	High p_{Tt}	ggF: -0.7	VBF: -1.3	Others: +0.4	
	Tight high-mass two-jet	ggF: +11.8	VBF: +6.7	Others: +20.2	
	Loose high-mass two-jet	ggF: +10.7	VBF: +4.0	Others: +5.7	
	Low-mass two-jet	ggF: +4.7	VBF: +2.6	Others: 1.4	
	$E_{\mathrm{T}}^{\mathrm{miss}}$ significance	ggF: 0.0	VBF: 0.0	Others: 0.0	
	one-lepton	ggF: 0.0	VBF: 0.0	Others: -0.1	
Jet Energy Resolution	Low p_{Tt}	ggF: 0.0	VBF: 0.2	Others: 0.0	Gaussiar
6,7	High p_{Tt}	ggF: -0.2	VBF: 0.2	Others: 0.6	
	Tight high-mass two-jet	ggF: 3.8	VBF: -1.3	Others: 7.0	
	Loose high-mass two-jet	ggF: 3.4	VBF: -0.7	Others: 1.2	
	Low-mass two-jet	ggF: 0.5	VBF: 3.4	Others: -1.3	
	$E_{\rm T}^{\rm miss}$ significance	ggF: 0.0	VBF: 0.0	Others: 0.0	
	one-lepton	ggF: -0.9	VBF: -0.5	Others: -0.1	
η^* modelling	Tight high-mass two-jet: +7.6 Loose high-mass two-jet: +6.2			Gaussiaı	
Dijet angular modelling	Tight high-mass two-jet: +12.1			Gaussiaı	
	Loos	e high-mass two	o-jet: +8.5		
Higgs p_{T}		Low p_{Tt} : +1	.3		Gaussiaı
	High p_{Tt} : -10.2				
	Tight high-mass two-jet: -10.4				
	Loose high-mass two-jet: -8.5				
	Low-mass two-jet: -12.5				
	1	E ^{miss} significance one-lepton: –			
Material Mismodelling		Unconv: -4.0	Conv: +3.5		Gaussiaı
JVF	Loose High-mass two-jet	ggF: -1.2	VBF: -0.3	Others: -1.2	Gaussiaı
	Low-mass two-jet	ggF: -2.3	VBF: -2.4	Others: -2.3	
$E_{ m T}^{ m miss}$	$E_{\mathrm{T}}^{\mathrm{miss}}$ significance	ggF: +66.4	VBF: +30.7	VH, ttH: +1.2	Gaussiaı
e reco and identification		one-lepton: <	: 1		Gaussiaı
e Escale and resolution		one-lepton: <	: 1		Gaussiai
μ reco, ID resolution	one-lepton: < 1				Gaussiai
μ spectrometer resolution	n one-lepton: 0 Ga				Gaussiai

Model-independent presentation

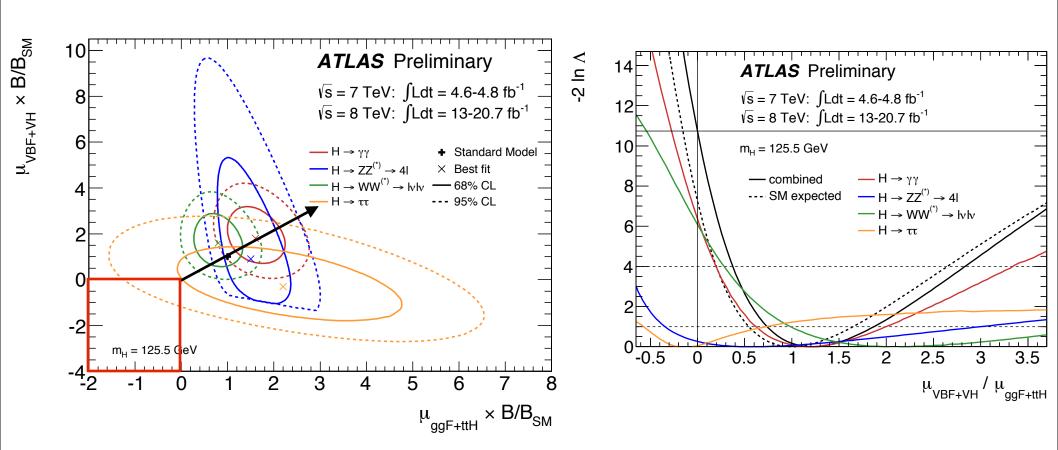
15


Next: covariance matrix or likelihood before grouping ggF+ttH & VBF+VH

Note: All coupling measurements pass through this space

Unfortunately, $H \rightarrow \gamma \gamma$ no longer high

Model-independent presentation



17

Can't compare contours directly, b/c there is a different BR for axis

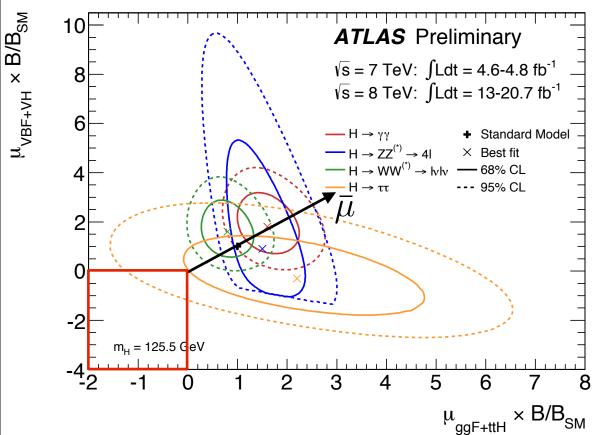
But, BR cancels when considering slope in this plane

still sensitive to theory uncertainties (jet veto, ggH+2jet contamination,...)

~3σ evidence for VBF Higgs production!

Kyle Cranmer (NYU) PCTS, April 26, 2013

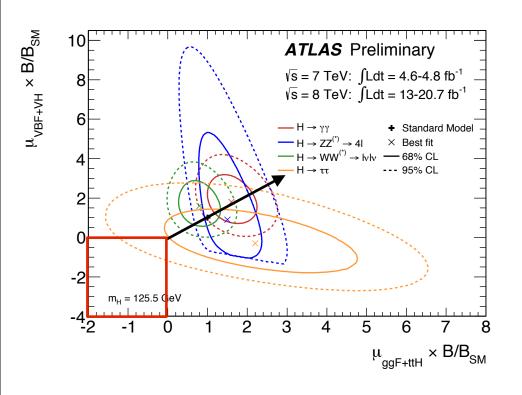
Ratio of Branching Ratios



Anything that relies on σ_{ggF} subject to reasonably large theoretical uncertainty (thus hard to make claim of BSM physics)

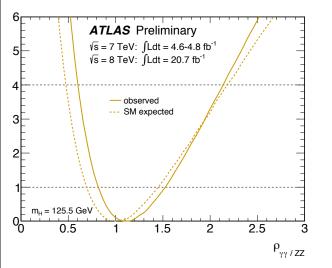
Measure ratio of branching ratios instead

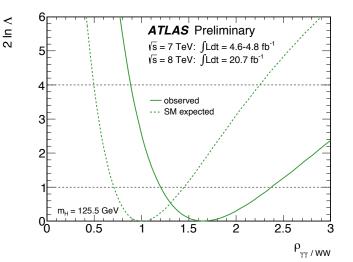
Not trivial with multiple production modes b/c cross-section doesn't cancel

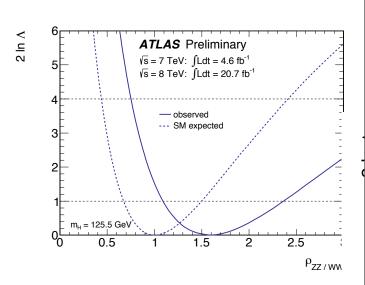

$$L\left(\bar{\mu}\frac{BR(\gamma\gamma)}{BR_{\rm SM}(\gamma\gamma)}\right)L\left(\bar{\mu}\frac{BR(ZZ)}{BR_{\rm SM}(ZZ)}\right) \to L\left(\underbrace{\bar{\mu}\frac{BR(ZZ)}{BR_{\rm SM}(ZZ)}}_{NP}\underbrace{\frac{BR(\gamma\gamma)}{BR(ZZ)}\underbrace{\frac{BR(\gamma\gamma)}{BR_{\rm SM}(ZZ)}}_{POI}\right)L\left(\underbrace{\bar{\mu}\frac{BR(ZZ)}{BR_{\rm SM}(ZZ)}}_{NP}\right)$$

- 1. Profile on $\frac{\mu_{\rm ggF+ttH}}{\mu_{
 m VBF+WH}}$
- 2. Overall $\bar{\mu}$ production cancels
- 3. Measure: $\frac{BR(\gamma\gamma)}{BR(ZZ)} \frac{BR_{\rm SM}(ZZ)}{BR_{\rm SM}(\gamma\gamma)}$

Ratio of Branching Ratios

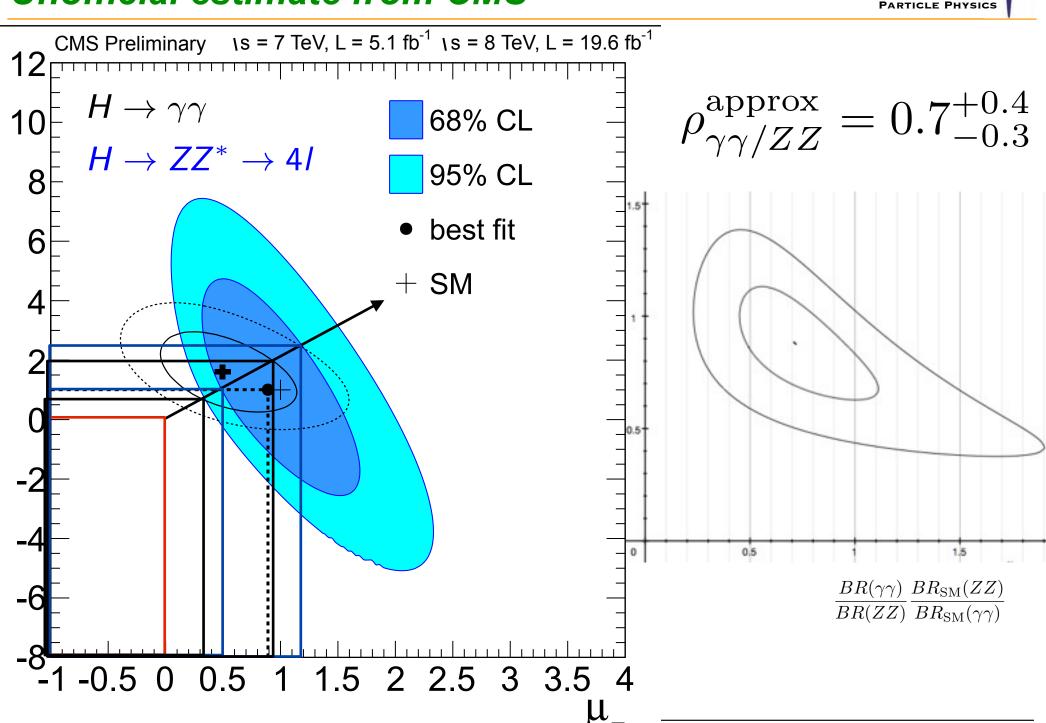



$$\rho_{\gamma\gamma/ZZ} = \frac{\mathrm{BR}(H \to \gamma\gamma)}{\mathrm{BR}(H \to ZZ^{(*)})} \times \frac{\mathrm{BR}_{\mathrm{SM}}(H \to ZZ^{(*)})}{\mathrm{BR}_{\mathrm{SM}}(H \to \gamma\gamma)}$$


$$\rho_{\gamma\gamma/ZZ} = 1.1^{+0.4}_{-0.3}$$

$$\rho_{\gamma\gamma/WW} = 1.7^{+0.7}_{-0.5}$$

$$\rho_{ZZ/WW} = 1.6^{+0.8}_{-0.5}$$



Unofficial estimate from CMS

20

Narrow width approximation

The basic starting point for the various parametrizations:

$$\sigma(H) \times \text{BR}(H \to xx) = \frac{\sigma(H)^{\text{SM}}}{\Gamma_p^{\text{SM}}} \cdot \frac{\Gamma_p \Gamma_x}{\Gamma}$$

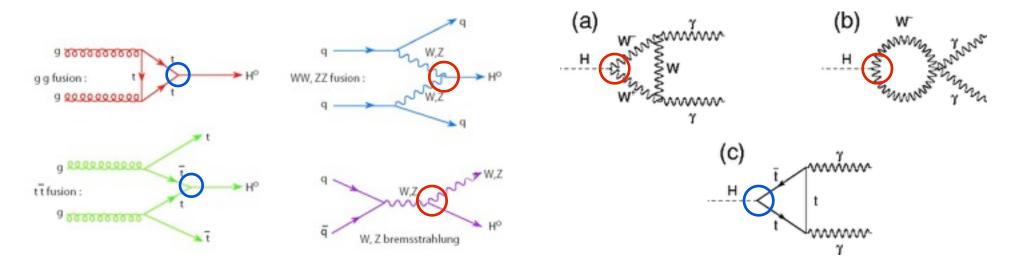
No useful direct constraint on total width at LHC

- ideally, allow for invisible or undetected partial widths
- leads to an ambiguity unless something breaks degeneracy

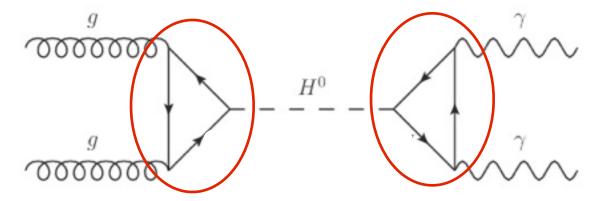
Various strategies / assumptions break this degeneracy

- Assume no invisible decays
- Fix some coupling to SM rate
- Only measure ratios of couplings
- ullet Limit $\Gamma_V \leq \Gamma_V^{
 m SM}$ eg. Dührssen et. al, Peskin, ...
 - valid for CP-conserving H, no H⁺⁺, ... Gunion, Haber, Wudka (1991)
 - together with $\Gamma_V^2/\Gamma = \text{meas} \ \Rightarrow \ \Gamma_{\text{vis}} \leq \Gamma \leq \Gamma_{V,SM}^2/\text{meas}$

Parametrizing the couplings



22


Approach: scale couplings w.r.t. SM values by factor κ

Expansion around SM point with state-of-the-art predictions

Option 1) relate ggH and $\gamma\gamma$ H assuming no new particles in loop

Option 2) introduce κ_g and κ_γ as effective coupling to ggH and $\gamma\gamma$ H

Overview of parametrizations

Production modes

$$\frac{\sigma_{\text{ggH}}}{\sigma_{\text{ggH}}^{\text{SM}}} = \begin{cases} \kappa_{\text{g}}^{2}(\kappa_{\text{b}}, \kappa_{\text{t}}, m_{H}) \\ \kappa_{\text{g}}^{2} & \text{option 1/2} \end{cases}$$

$$\frac{\sigma_{\text{VBF}}}{\sigma_{\text{VBF}}^{\text{SM}}} = \kappa_{\text{VBF}}^2(\kappa_{\text{W}}, \kappa_{\text{Z}}, m_H)$$

$$\frac{\sigma_{\rm WH}}{\sigma_{\rm WH}^{\rm SM}} = \kappa_{\rm W}^2$$

$$\frac{\sigma_{\rm ZH}}{\sigma_{\rm ZH}^{\rm SM}} = \kappa_{\rm Z}^2$$

$$\frac{\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}^{SM}} = \kappa_t^2$$

Total width

$$\frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} = \begin{cases} \kappa_{\rm H}^2(\kappa_i, m_H) \\ \kappa_{\rm H}^2 \end{cases}$$

Detectable decay modes

$$\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}} = \kappa_W^2$$

$$\frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{ZZ^{(*)}}^{SM}} = \kappa_Z^2$$

$$\frac{\Gamma_{b\bar{b}}}{\Gamma_{b\bar{b}}^{SM}} = \kappa_t^2$$

$$\frac{\Gamma_{\tau^-\tau^+}}{\Gamma_{\tau^-\tau^+}^{SM}} = \kappa_{\tau}^2$$

$$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{\text{SM}}} = \begin{cases} \kappa_{\gamma}^{2}(\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa_{\gamma}^{2} \end{cases}$$

$$\frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}} = \begin{cases} \kappa_{(Z\gamma)}^2(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W, m_H) \\ \kappa_{(Z\gamma)}^2 \end{cases}$$

Benchmark models

Fully model independent fit is not very informative with current data

Benchmarks proposed by joint theory/experiment LHC XS group

arXiv:1209.0040

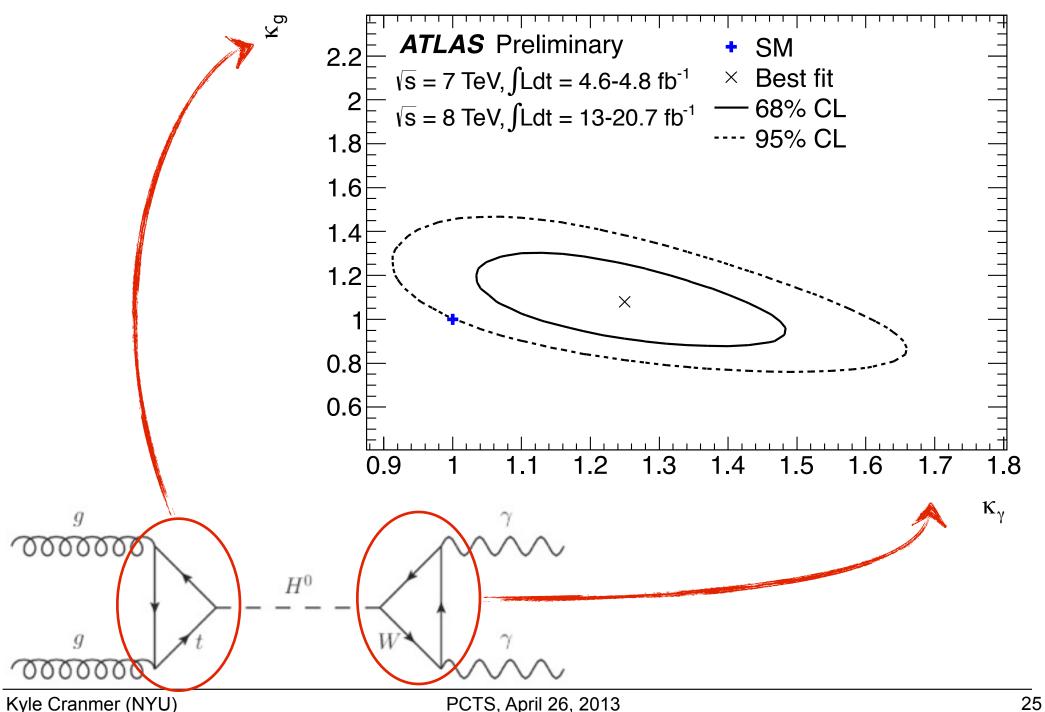
Probe Fermionic vs. Bosonic couplings: $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$

• relevant for Type I 2HDM $\kappa_V = \kappa_{\rm W} = \kappa_{\rm Z}$

Probe W vs. Z couplings (custodial symmetry)

• note: current benchmark assumes nothing new in ggH and $\gamma\gamma$ H loops!

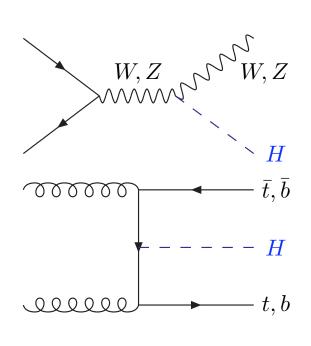
Probe up. vs. down fermion couplings

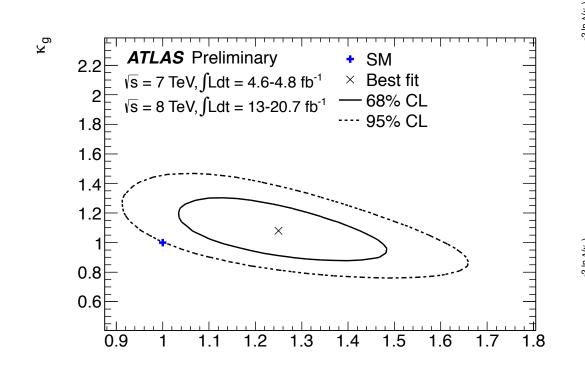

Probe quark vs. lepton couplings

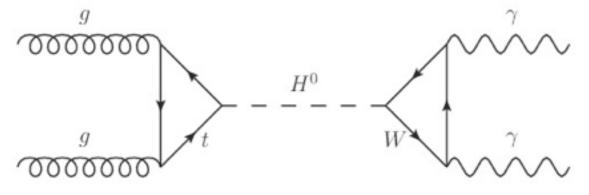
Probe new particles in ggH and $\gamma\gamma$ H loops

Probe invisible decays

Probing new physics in loops

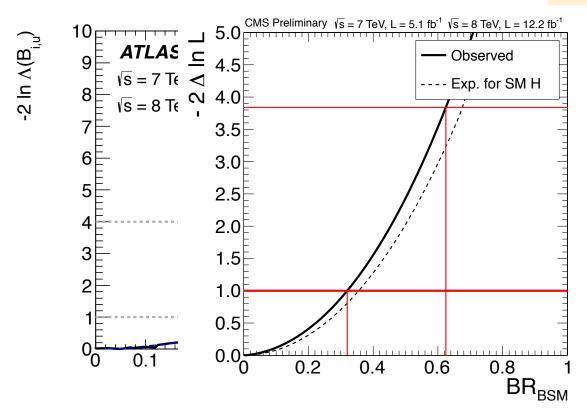


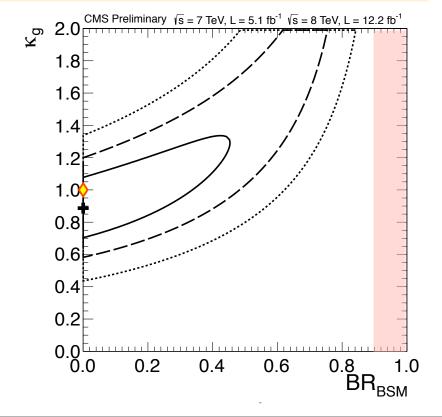



Near future

ttH and WH production with H \rightarrow bb and H $\rightarrow\gamma\gamma$ will offer some useful measurements to play against H $\rightarrow\gamma\gamma$

Probing invisible dec




Here total width modified

- uses effective coupling for ggH and γγH loops
- everything else is SM-like (namely VBF production)

Disfavors large BR to invisible

As BR(inv) increases, κ_g must increase As $\kappa_g \to \infty$ B(gg) \to B(gg)_{SM} ~10% Thus BR(inv) < 1-B(gg)_{SM}

Information Geometry

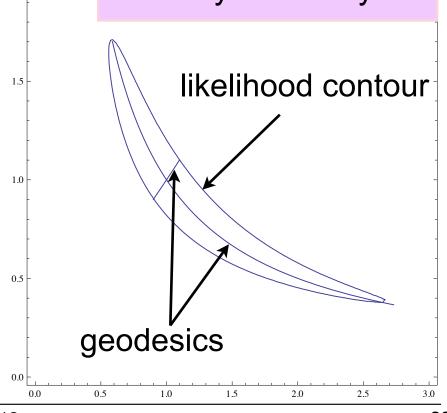
For a given experiment, there is a natural parametrization of the theory where the expected error ellipses are all unit circles ⇒ a metric on the original parameters

For couplings, the metric tensor for any theory can be written in terms of

- a (singular) matrix representing experimental information, and
- a Jacobian that depends only on the theory

In example below the likelihood contour

is reconstructed by following geodesics


metric tensor

$$I(\kappa) = \mathbf{J}^T I(\eta) \mathbf{J}$$

$$\eta = (\sigma_i, BR_f)$$

$$\kappa = \text{your theory}$$

A worked example

Consider several number counting expts. (bins) with expectation:

$$\lambda_c = \sum_{p,d} s_{c;pd} \eta_p \eta_d + b_c$$

where the η are scale factors for production and decay. Fisher information matrix is given by the following (singular) matrix:

$$I_{\mu\nu}(\boldsymbol{\eta}) = \sum_{c} \frac{1}{\lambda_{c}} \left[\frac{\partial \lambda_{c}}{\partial \eta_{\mu}} \right] \left[\frac{\partial \lambda_{c'}}{\partial \eta_{\nu}} \right] = \sum_{c} I_{\mu\nu}^{c}(\boldsymbol{\eta})$$

For a specific theory parametrized by κ that predicts $\eta(\kappa)$ we have

$$I_{\mu
u}(oldsymbol{\kappa}) = \sum_{c} \left[rac{\partial \eta_i}{\partial \kappa_
u}
ight] I^c_{ij}(oldsymbol{\eta}) \left[rac{\partial \eta_j}{\partial \kappa_
u}
ight]$$

cleanly factorizes theory from experiment.

Experimental Design

30

The volume of the error ellipse is proportional to

$$\sqrt{\det[I_{\mu\nu}(\boldsymbol{\kappa})]}$$

The volume of the ellipse at the standard model ($\kappa = \kappa_{SM}$) is a reasonable figure of merit for optimizing an analysis.

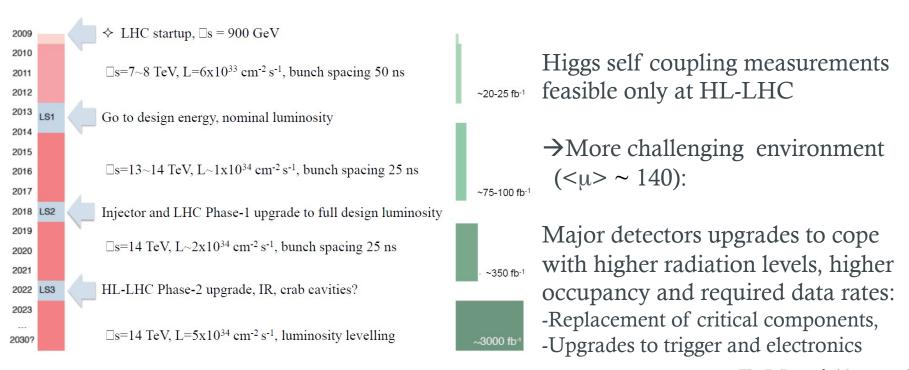
Recall

$$\lambda_c = \sum_{p,d} s_{c;pd} \eta_p \eta_d + b_c$$

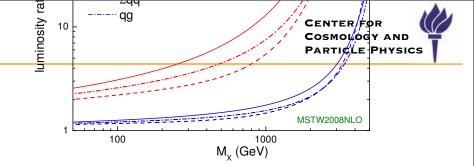
Parametrize cut requirements by α , then expected signal becomes

$$s_{c;pd} o s_{c;pd}(\boldsymbol{\alpha})$$

And analysis optimization becomes


$$\nabla_{\alpha} \sqrt{\det[I_{\mu\nu}(\boldsymbol{\kappa}_{\mathrm{SM}})]} = 0$$

LHC potential for European Strategy


Bad timing:

- same few months as discovery and first property measurements
- Iimited effort available for these studies
- based on simplifications and assumptions about detector, how theory uncertainty evolves & systematics will scale with increased lumi, etc.

E. Meoni (Aspen 2013)

ATLAS & CMS Projections

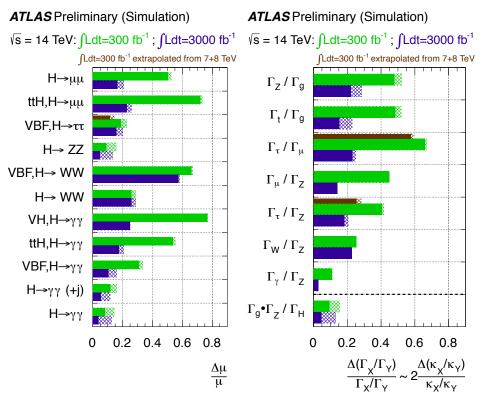


Figure 2.10: (a) Expected measurement precision on the signal strength in a selection of channels for 300 fb⁻¹ and 3000 fb⁻¹. (b) Expected precisions on ratios of Higgs boson partial widths. In both figures the bars give the expected relative uncertainty for a SM Higgs with mass 125 GeV (dashed are current theory uncertainty from QCD scale and PDFs). The thin bars show extrapolations from current analysis to 300 fb⁻¹, instead of the dedicated studies for VBF channels.

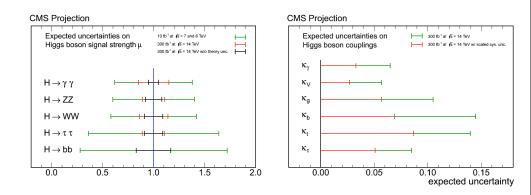
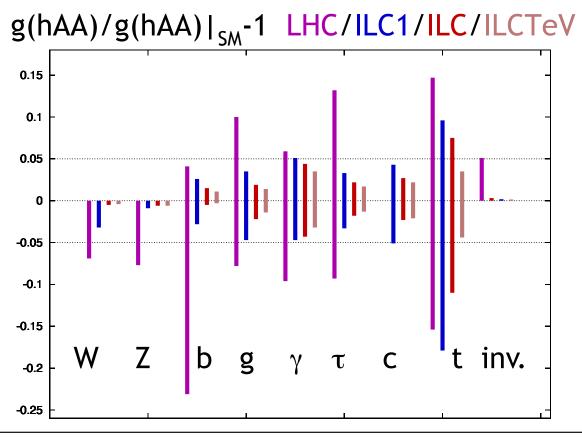


Figure 2.8: (Left) Estimated precision of the signal strength determination for a SM Higgs boson, from CMS. The projections assume $\sqrt{s} = 14$ TeV and an integrated luminosity of 300 fb⁻¹. They are shown including the current uncertainties and neglecting the systematic uncertainties from theory and are compared to the expected uncertainties of the measurement with 10 fb⁻¹ at $\sqrt{s} = 7$ and 8 TeV. (Right) Estimated precision on the measurements of the couplings κ_{γ} , κ_{V} , κ_{g} , κ_{b} , κ_{t} , and κ_{τ} from CMS, for 300 fb⁻¹ at $\sqrt{s} = 14$ TeV. The green line represents the precision attainable in the case where all systematic uncertainties are kept unchanged (present knowledge). The red line represents the precision achievable scaling the theoretical uncertainties by a factor of 1/2, while other systematic uncertainties are scaled by the square root of the integrated luminosity.

Status of the current projections



33

v3 appendix of M. Peskin's [arXiv:1208.5152] discussing European Strategy results

 understandable frustration with lack of documentation for these projections and poorly understood differences between ATLAS &CMS

What can be done to improve this situation for Snowmass?

Kyle Cranmer (NYU) PCTS, April 26, 2013

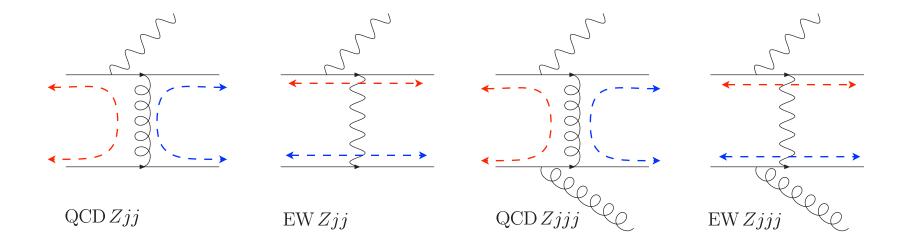
Example

0.5% precision on h→ bb!

warning... no systematic uncertainties

Table 11.2.4: Relative uncertainties on the Higgs $\sigma \times BR$ expected at \sqrt{s} =1 TeV using the SiD detector with integrated luminosities of 500 fb⁻¹ and 1 ab⁻¹ and polarisation sets P(e⁻) = -80%, P(e⁺) = +20% and P(e⁻) = +80%, P(e⁺) = -20%.

	$\mathcal{L} = 50$	$\mathcal{L} = 1 \text{ ab}^{-1}$		
	$P(e^{-}) = -80\%$ $P(e^{+}) = +20\%$	$P(e^{-}) = +80\%$ $P(e^{+}) = -20\%$	$P(e^{-}) = -80\%$ $P(e^{+}) = +20\%$	
$h \rightarrow b\overline{b}$	0.0067	0.046	0.0047	
$h \rightarrow c\overline{c}$	0.108	0.843	0.076	
$\begin{array}{c} h \rightarrow gg \\ h \rightarrow W^+W^- \end{array}$	0.044 0.047	0.294 0.346	0.028 0.031	


Tim Barklow, Snowmass Energy Frontier @ BNL [link]

The Central Jet Veto

→ ZjjjX

Central Jet Veto leads to theoretical uncertainties

Flow of color-charge leads to different distributions for additional QCD radiation for Electroweak and QCD Zjj background

A Central Jet Veto is a major tool for the analysis

Precise knowledge of signal efficiency is crucial for limits and coupling measurements

(a)

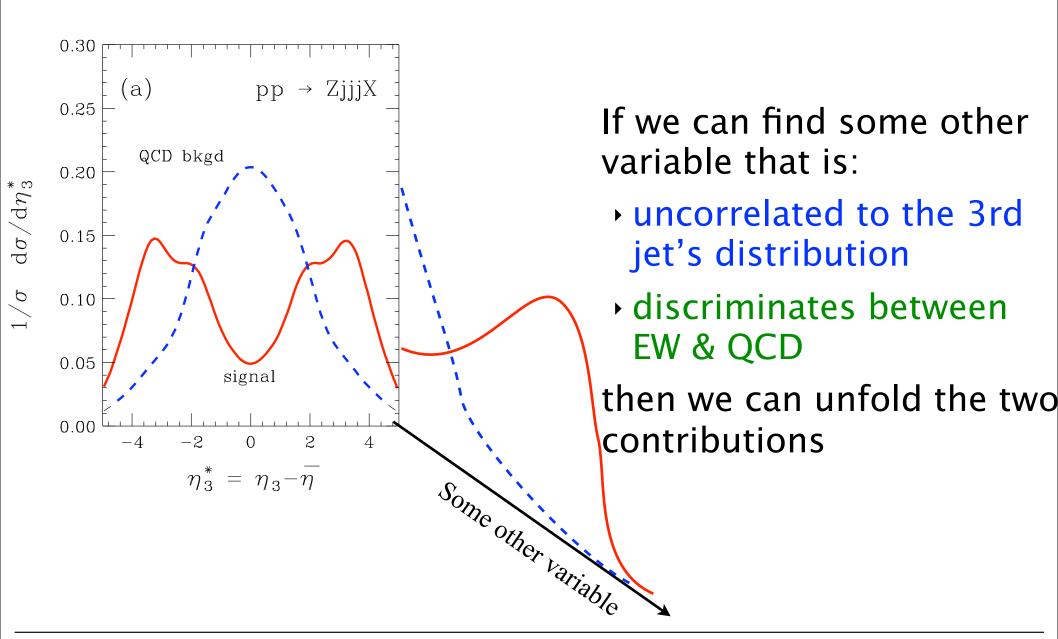
QCD bkgd

 $\eta_3^* = \eta_3 - \overline{\eta}$

0.25

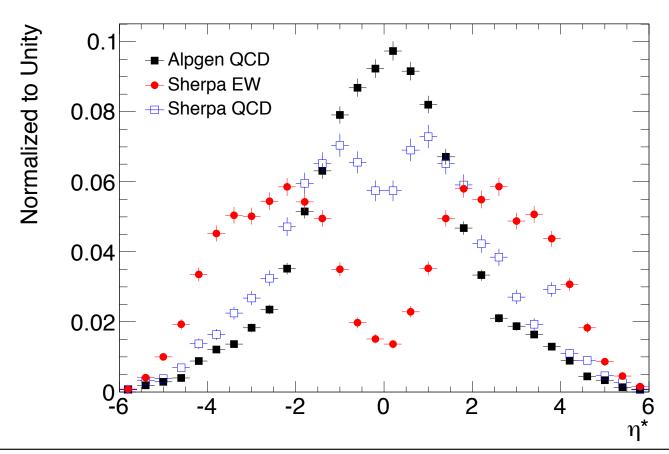
0.20

0.15


0.10

0.05

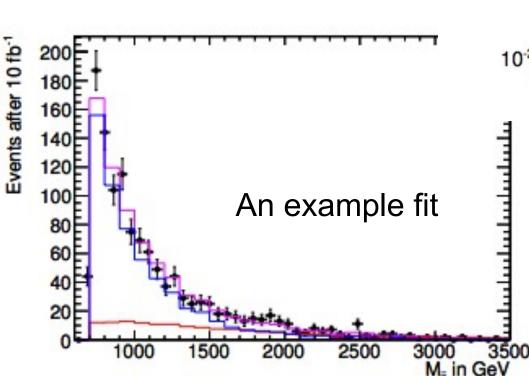
By looking at $Z \to e^+e^- \& Z \to \mu^+\mu^-$ we remove Higgs contribution

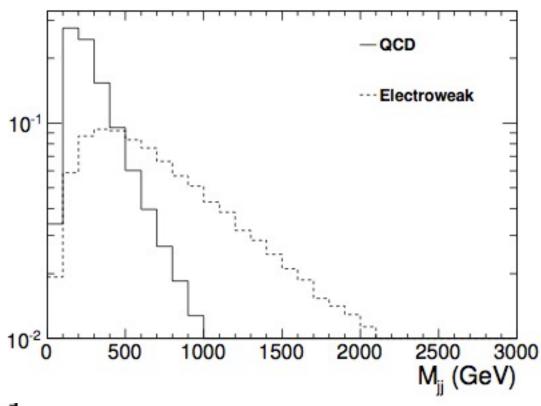


Monte Carlo uncertainties

Fairly striking difference between Sherpa & Alpgen QCD

- Steffen Schumann helped us validate this in Sherpa
- this is a good testing ground for modern QCD tools
- my point here is not the prediction, but about how well we can measure the EW vs. QCD

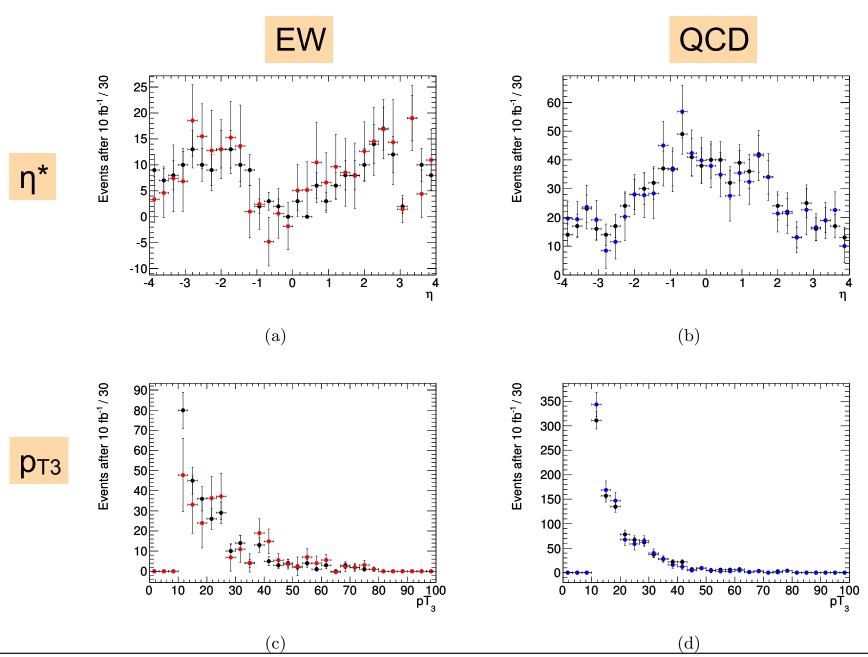

Normalized to Unity 0.08 0.04 0.04 0.02

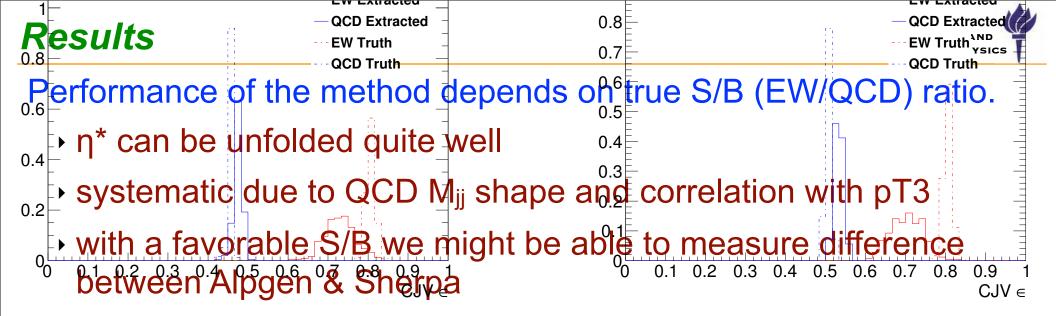

An example fit

Different shapes for EW / QCD

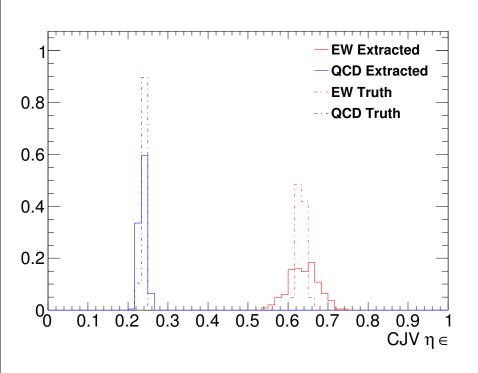
•Z+2j is leading order for the EW process, under better control (NLO possible)

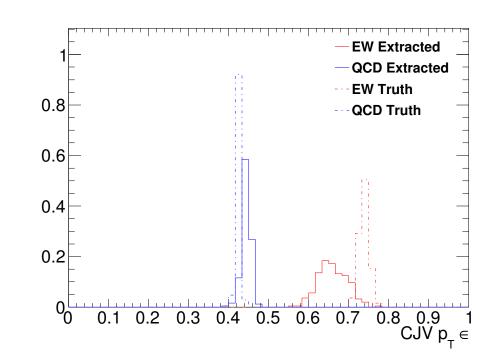
QCD M_{jj} shape either:

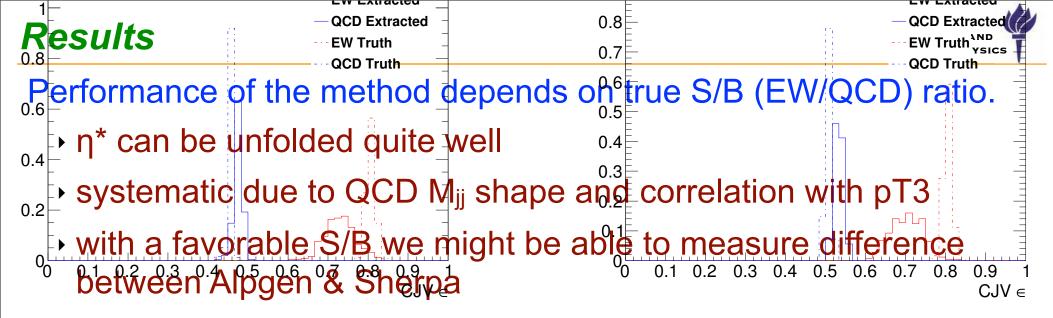

- from data (loosen cuts) or from MC
- Assess systematic on shape assumption by switching between Alpgen and Sherpa template


Normalized to Unity

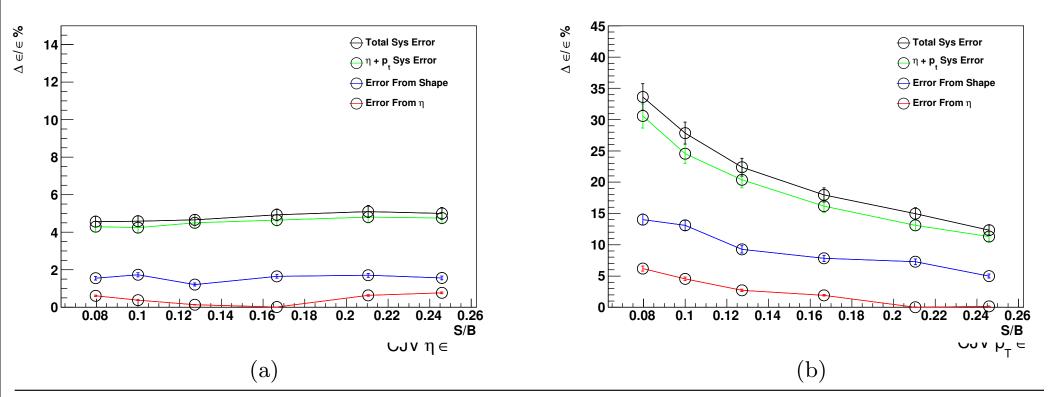
An example unfolding




black: truth blue/red: unfolded



Now needs to be followed up within experiments



Kyle Cranmer (NYU)

Now needs to be followed up within experiments

Conclusions

The measurement of Higgs properties is under way

- we have a working framework in which to perform these measurements
- some channels are already transitioning to systematics limited
- theoretical uncertainties are a big challenge

Our current projections for LHC potential are quite uncertain

- we don't want to make our physics case on overly optimistic or pessimistic projections
 - Don't mis-underestimate how clever we can be with time
 - it's hard to plan on these improvements, when the strategy for achieving them is not yet in place.

Higgs coupling measurements in scenario where we observe nonstandard production or decay are also interesting