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 SM-like couplings to 
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Mass of "maximum opportunity" 
in terms of the study of its decays 

and couplings to other particles
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 and

 SM-like Br's expected
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What we know Implications for ILC/

 Scalar Mass  ~125 GeV  

 SM-like couplings to 
 major production reactions present in 

accessible to 

flurry of machine
options being 
considered

 and

 SM-like Br's expected

 mainly

        coupling exists 
 direct  exists (need higher collision energies)

(but want sensitive tests of small admixtures)



Higgs Production
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•  Fusion

1 Higgs in ~10  – 10   pp collisions
1 Higgs in 1% of all collisions

9 12

•  Clean
•  Democratic

•  Calculable
•  Longitudinal Polarization 

  (linear colliders): can boost signal,
   control SM backgrounds
  (unpolarized cross section
      at ~200 fb for circular colliders,
       transverse polarization available)

•  "Higgs"strahlung

First stage
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Circular

 circular machines usually
     



Higgs Production

 

 higher energies     

•  (direct) coupling to top
•  self-coupling
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Polarized

•  "Higgs"strahlung

Typical ILC program, 3 – 5 years each energy:
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Precision Electroweak
program that matches

precision Higgs

Giga-Z 
(Linear)
Tera-Z

(Circular) 

increases to 
converting to mass

's

Mega-W 
CLIC



Facilities

500 GeV25091 350 3 TeV1 TeV

ILCLinear
X-band

Single Beam
CLIC



Facilities

500 GeV25091 350 3 TeV1 TeV

ILC

LEP3 (LHC tunnel, 27 km), Fermilab Site Filler (16 km)

VLLC (233 km)

TLEP (80 km), 

CHF/IHEP ring (50 – 70 km) 

SuperTRISTAN (80 km) 

SuperTRISTAN (40 km), 

Linear

Circular

X-band

Single Beam
CLIC



Facilities

500 GeV25091 350 3 TeV1 TeV

ILC

LEP3 (LHC tunnel, 27 km), Fermilab Site Filler (16 km)

VLLC (233 km)

TLEP (80 km), 

CHF/IHEP ring (50 – 70 km) 

SuperTRISTAN (80 km) 

SuperTRISTAN (40 km), 

Linear

Circular

X-band

Single Beam
CLIC

Circular           machines 
give up capability to do 

•  
•  self-coupling

Give up capability to do 
scan and precision
       measurement



Facilities

500 GeV25091 350 3 TeV1 TeV

ILC

LEP3 (LHC tunnel, 27 km), Fermilab Site Filler (16 km)

VLLC (233 km)

TLEP (80 km), 

CHF/IHEP ring (50 – 70 km) 

SuperTRISTAN (80 km) 

SuperTRISTAN (40 km), 

Linear

Circular

X-band

Single Beam
CLIC

But trade for doing
same at VLHC/SLHC
~33 –100 TeV pp 
colliders in same tunnel 
plus big jump in physics 
reach

Give up capability to do 
scan and precision
       measurement



Circular

  (~no beamstrahlung: full       , recirculating beams, 
                                                         multiple detectors, no energy upgrade)

Short beam lifetime (minutes), top-up injection from separate
  accelerating ring

New ~80 km ring:

At White Paper stage, planning Conceptual Design Report



CLIC (Compact Linear Collider)

(looking at lower
energy options)
    

Two beams: low E, high current drive; ~48 km long 

Linear

 Conceptual Design Report completed in 2012
      http://clic-study.org/accelerator/CLIC-ConceptDesignRep.php



Tomohiko Tanabe (tomohiko@icepp.s.u-tokyo.ac.jp)	


CLIC two-beam scheme 
compatible with energy staging 
to provide the optimal machine 
for a large energy range. 
 
Lower energy machine can run 
most of the time during the 
construction of the next stage. 
 
Recently studies have begun 
on a ~375 GeV first stage with 
single beam, switching to two-
beam at higher energies which 
reuses the low energy facilities. 

CLIC Staging Plan 
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ILC (International Linear Collider)
Superconducting cavities, ~30 km long

cost does not
scale linearly!

Linear

 ILC Technical Design Report (2013) (including full costing)
  Draft versions of Detailed Baseline Design Report, Physics & Detectors:
         http://ific.uv.es/~fuster/DBD-Chapters/
  Final version 
     (including Accelerator via multi-year Global Design Effort) 
          will be available in 2013



ILC (International Linear Collider)

Implication of Higgs discovery:
  political trigger point

Hitoshi Muryama, BNL Energy
  Frontier Meeting
      https://indico.bnl.gov/materialDisplay.py?
         contribId=57&sessionId=11&materialId=slides&confId=571

Tomohiko Tanabe, Princeton 
  Snowmass Higgs Meeting
     http://physics.princeton.edu/indico/contributionDisplay.py?
        contribId=13&sessionId=7&confId=127

Superconducting cavities, ~30 km long

cost does not
scale linearly!

Linear



Situation in Japan

 March 2012: Japan Association of High Energy Physicists:

   "Should a new particle such as a Higgs boson with a mass 
below approximately 1~TeV be confirmed at LHC, Japan should 
take the leadership role in an early realization of an e+e– linear 
collider.  In particular, if the particle is light, experiments at low 
collision energy should be started at the earliest possible time."  

 Oct. 2012: Japan Association of High Energy Physicists:

   "On the basis of these developments and following the 
subcommittee's recommendation on ILC, JAHEP proposes that 
ILC be constructed in Japan as a global project with the agreement 
of and participation by the international community.
Staging:
– A Higgs factory with a CM energy of ~250 GeV to start
– Upgraded in stages to ~500 GeV (ILC baseline)
– Technical expandability to ~1 TeV to be secured
 



Situation in Japan

 KEK 2013 Roadmap: 
   "aims at starting the construction under international framework 
within the duration of this roadmap (5 years from 2014)."  

Guideline for cost sharing
The host country to cover 50% of the expenses (construction) 
   of the overall project of the 500 GeV machine.
The actual contribution, however, should be left to negotiations 
  among the governments.
 



Situation in Japan

Dec. 2012: new political party elected, new
  prime minister Shinzo Abe

In his State of the Union equivalent speech

‘Federation of Diet Members for Promotion 
     of the ILC’, two ministers to be visiting D.C.

ILC explicited mentioned twice in campaign
  policy document

Answered questions on it in parliament
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LC Organization

•  

ILC Accelerator
PhysicsCLIC

Studies of measurements of mass, J    , couplings, etc., going
  on for ~20 years so generally mature, in decent shape, and
  fairly up-to-date, but still holes, always room for improvements,
  and now responding to 125 GeV state: white papers for Snowmass

Recent documents:

Mod. vertex,
very forward cov.,

had. cal depth

ILC Reference Design Report V2: Physics,  arXiv:0709.1893

•  CLIC Conceptual Design Report, arXiv:1202.5940
•  ILC Detailed Baseline Design Report/Physics,  lcsim.org/papers/DBDPhysics.pdf

(draft)

Common organization
 under Linear Collider Board

Full simulations: ILD detector TPC-based tracking, arXiv:1006.3396CLIC-ILD detector

CLIC-SiD detector
SiD detector Silicon-based tracking, arXiv:0911.0066

PC



Higgs Factories

•  Mass
•  CP admixture
•  Separate cross sections
•  Separate branching fractions
•  Total width

 Necessary increased precision on:

 Remember: if expect deviations of only a few %,
   need   few %  for a 5s "discovery"...

 5

 Complementary to LHC

 LHC already and likely to continue doing a spectacular job!



Higgs Factories

•  Mass
•  CP admixture
•  Separate cross sections
•  Separate branching fractions
•  Total width

 Necessary increased precision on:

 Remember: if expect deviations of only a few %,
   need   few %  for a 5s "discovery"...!

 ...although there may be patterns:
 5

 Complementary to LHC

 LHC already and likely to continue doing a spectacular job!



, Cross Section The first step...
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•  measurement independent 
   of Higgs decay mode

So important
Can we do better than this?

(small systematics, e.g., lumi syst.,
    understanding of isolated leptons)

 ILD@ILC,       = 250 GeV, 250 fb–1
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, Br's
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  including to invisible/dark matter
  or exotic decays

Essential!  Could be happening at LHC and
  we would not know
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•  extraction of Br's will always include  

  (although correlated across all Br's)
 (e.g., ±2.5%)



, Br's
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•  Completely model independent 
  measurements of Br's/couplings
  (instead of     Br as LHC) 
  including to invisible/dark matter
  or exotic decays

•  Experimentally, not much difference
  between circular and linear machines

 CMS@LEP3,       = 240 GeV, 500 fb–1



, Br's

 ILC,       = 250 GeV, 250 fb

Physics Volume, Techical Design Report (DBD), updated March 31  

fully correlated
across all Br's

, polarization –1



, Total Width

 prop. to

 small, large error

 smallish

 prop. toInstead:

How to do better??
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, Total Width

 prop. toInstead:

Move to higher energies,
  e.g., 

Keep measuring Br's!

...and now the stuff that is 
     tough for most machines...
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6-jet and 8-jet modes:•

Better at higher energies (aside from larger fraction of non-ttH components)•



Self-Coupling
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Tough Stuff

�



Collecting...

...input to global analysis



Spin & CP

•  Angular analysis of decay products of polarized
   taus in                      , CP-oddadmixture to ~ 

 Spin (will be) moot aside from
  "conspiracy theories"?

•  scan 

Fermions:
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Combination Assumptions

No invisible or undetectable Higgs decays

More constrained



Combination Assumptions

No invisible or undetectable Higgs decays

More constrained



Global Analysis

Physics Volume, ILC Techical Design Report (DBD), updated March 31  

Expected Higgs boson coupling precisions in %:

arXiv:1207.2516 [hep-ph]



Global Analysis

Physics Volume, ILC Techical Design Report (DBD), updated March 31  

250 
GeV

500
GeV

1 TeV

arXiv:1207.2516 [hep-ph]
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Linear and Circular Comparisons

 optimistic
 pessimistic

TLEP

LinearCircular

In consultation with accelerator physicists, proponents investigating
   luminosity upgrades and their impact



Linear and Circular Comparisons

Assumptions going into global analyses of Higgs couplings

Example Apples and Oranges:

Ignoring multiple IP's/detectors of circular machines

Beam-beam effects of multiple IP's tend to reduce luminosity

Not including correlated uncertainties into table entries (e.g.,         ) 

What's a year?

"The integrated luminosities for the ILC and CLIC were based on a model
with slow initial build-up for machine operation."

ILC LEP3

Snowmass year = (usually to take into account uptime)



Patrick Janot 

Physics	
  case	
  as	
  a	
  Higgs	
  Factory	
  (1)	
  

q  Number	
  of	
  Higgs	
  bosons	
  produced	
  at	
  √s	
  =	
  240-­‐250	
  GeV	
  

◆  In	
  a	
  given	
  amount	
  of	
  time,	
  Higgs	
  coupling	
  precisions	
  scale	
  like	
  
●  	
  e.g.,	
  for	
  gHZZ	
  :	
  	
  1.5%	
  	
  for	
  ILC	
  :	
  0.65%	
  for	
  LEP3	
  :	
  0.2%	
  for	
  TLEP	
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   ILC-­‐250	
   LEP3-­‐240	
   TLEP-­‐240	
  

Lumi	
  /	
  IP	
  /	
  5	
  years	
   250	
  s-1	

 500	
  s-1	

 2.5	
  ab-1	



#	
  IP	
   1	
   2	
  -­‐	
  4	
   2	
  -­‐	
  4	
  

Lumi	
  /	
  5	
  years	
   250	
  s-1	

 1	
  -­‐	
  2	
  ab-1	

 5	
  -­‐	
  10	
  ab-1	



Beam	
  Polarization	
   80%,	
  30%	
   –	
   –	
  

L0.01	
  (beamstrahlung)	
   86%	
   100%	
   100%	
  

Number	
  of	
  Higgs	
   70,000	
   400,000	
   2,000,000	
  

Upgradeable	
  to	
  	
  
ILC	
  1TeV	
  

	
  CLIC	
  	
  3	
  TeV	
  ?	
  
HE-­‐LHC	
  	
  
33	
  TeV	
  

VHE-­‐LHC	
  
100	
  TeV	
  

Snowmass Energy Frontier Workshop 



Linear and Circular Comparisons

LHC is where Higgs properties are being measured, so fully exploit!

My personal take:

Taking uncertainties into account, for direct Higgs properties:

ILC (at only 250) ~ 240 GeV Circular (e.g., LEP)
(but lose top threshold scan!!)

ILC at higher energies is essential; momentum in Japan

Circular machine luminosity roughly prop. to circumference

For sheer luminosity and follow-up physics reach, hard
   to  beat TLEP + pp collider, but what about time scales and total cost?

(both sizes deserve CDR...)



Linear and Circular Comparisons

LHC is where Higgs properties are being measured, so fully exploit!

Discussion welcome!

My personal take:

Taking uncertainties into account, for direct Higgs properties:

ILC (at only 250) ~ 240 GeV Circular (e.g., LEP)
(but lose top threshold scan!!)

ILC at higher energies is essential; momentum in Japan

For sheer luminosity and follow-up physics reach, hard
   to  beat TLEP + HE pp collider, but what about time scales and total cost?

(deserves CDR...)
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