
Implications of Higgs Discovery on LC/e⁺e⁻ Factories

Outline:

- Implications
- Physics
- Facilities
- Organization
- Property measurements
- Some comparisons

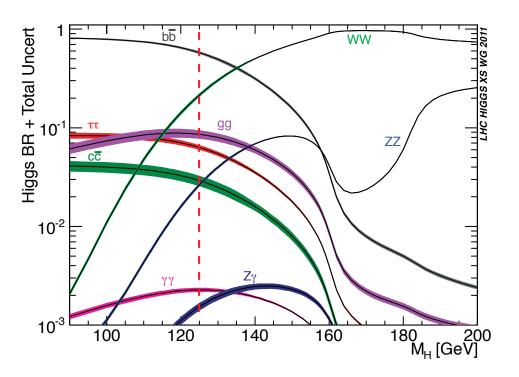
Implications for ILC/ e^+e^-

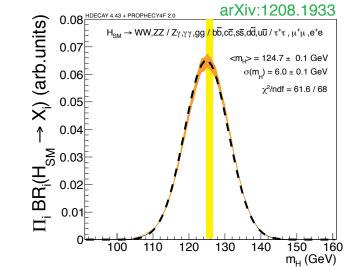
- Scalar Mass ~125 GeV
- SM-like couplings to WW and ZZ

 \rightarrow major production reactions present in e^+e^-

Implications for ILC/ e^+e^-

- Scalar Mass ~125 GeV
- SM-like couplings to WW and ZZ
 major production reactions present in


 $\begin{array}{l} \text{accessible to} \\ E_{cm} \geq 250 \, \text{GeV} \\ e^+ e^- \end{array}$


Implications for ILC/ e^+e^-

- Scalar Mass ~125 GeV
- SM-like couplings to WW and ZZ
 major production reactions present in

accessible to $E_{cm} \ge 250 \,\mathrm{GeV}$ e^+e^-

• SM-like Br's expected

Mass of "maximum opportunity" in terms of the study of its decays and couplings to other particles

Implications for ILC/ e^+e^-

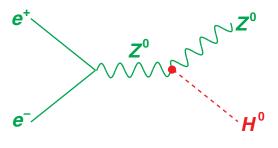
- Scalar Mass ~125 GeV
- SM-like couplings to WW and ZZ
 major production reactions present in
- SM-like Br's expected

accessible to $E_{cm} \ge 250 \,\mathrm{GeV}$ e^+e^-

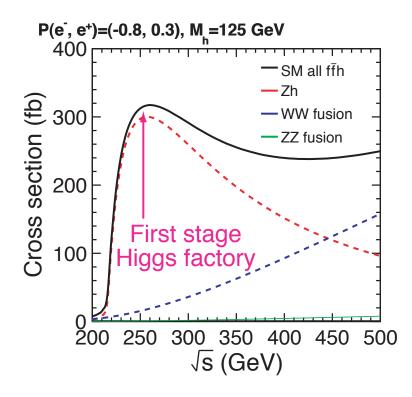
flurry of machine options being considered

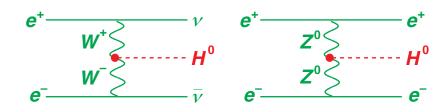
political trigger, particularly for ILC in Japan

Implications for ILC/ e^+e^-

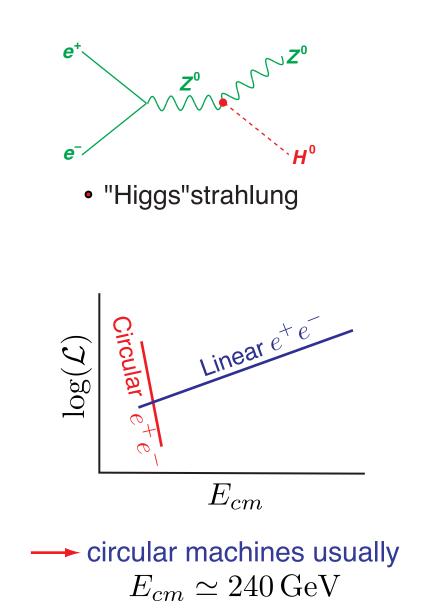

- Scalar Mass ~125 GeV
- SM-like couplings to WW and ZZ
 major production reactions present in
- SM-like Br's expected

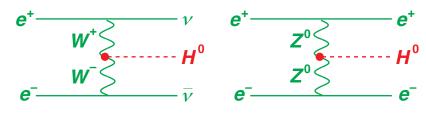
•
$$t\bar{t}H$$
 coupling exists $(gg \to H, H \to \gamma\gamma)$
 \longrightarrow direct $e^+e^- \to t\bar{t}H$ exists (need higher collision energies)

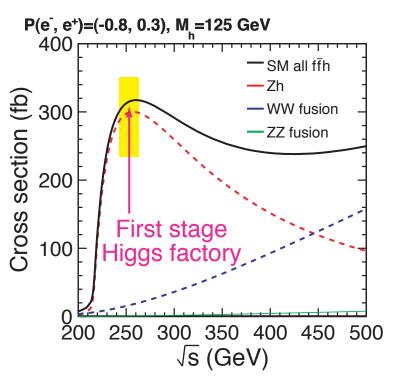

• J^{PC} mainly 0^{++} (but want sensitive tests of small admixtures)

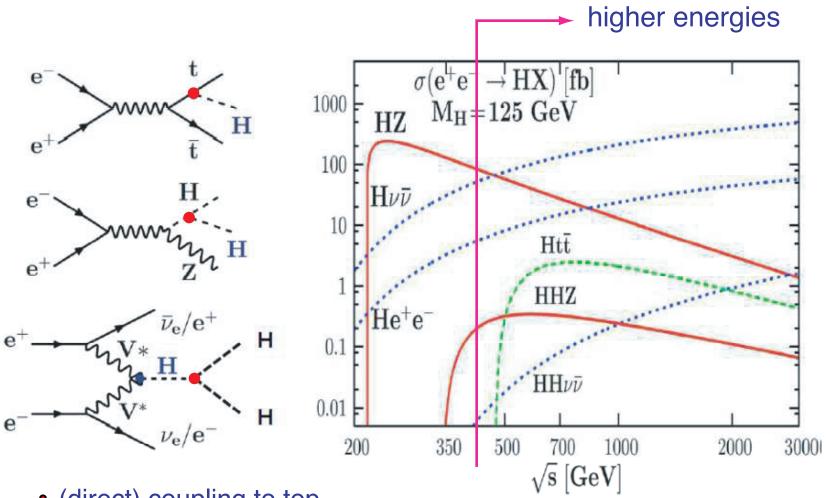

 $\begin{array}{l} \text{accessible to} \\ E_{cm} \geq 250 \, \text{GeV} \\ e^+ e^- \end{array}$

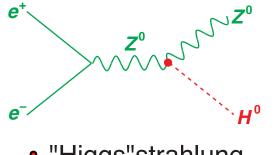
flurry of machine options being considered



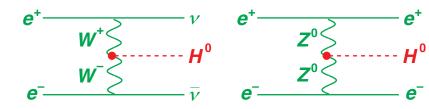

• "Higgs"strahlung



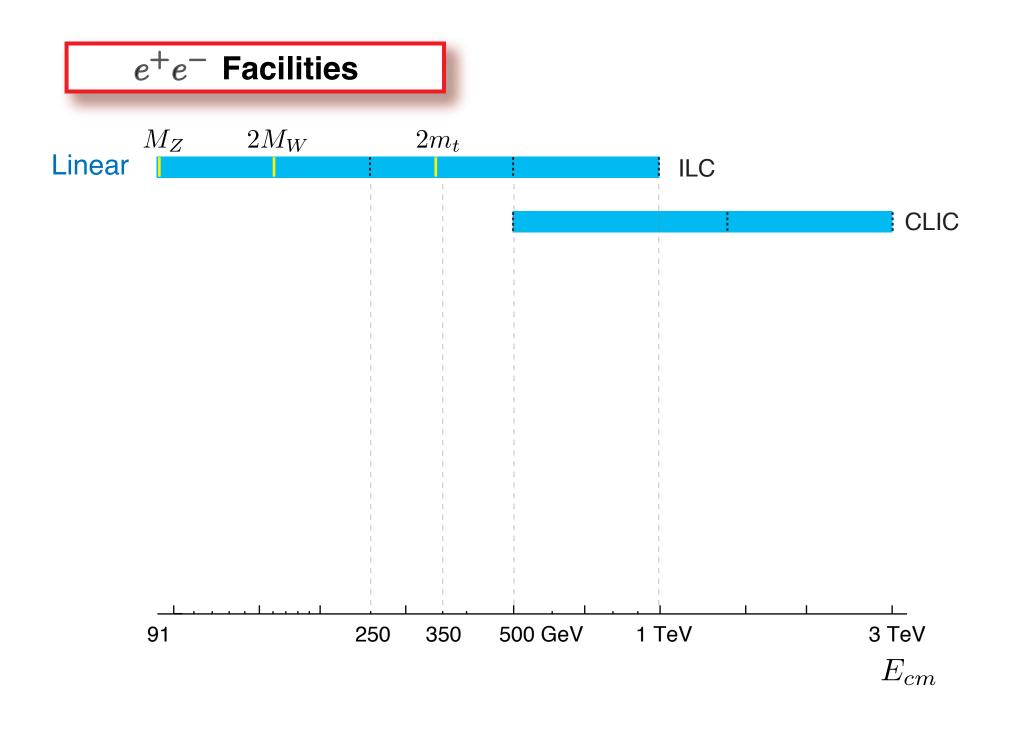

- Fusion
- Clean
- Democratic
 - 1 Higgs in $\sim 10^9 10^{12} pp$ collisions 1 Higgs in 1% of all e^+e^- collisions
- Calculable

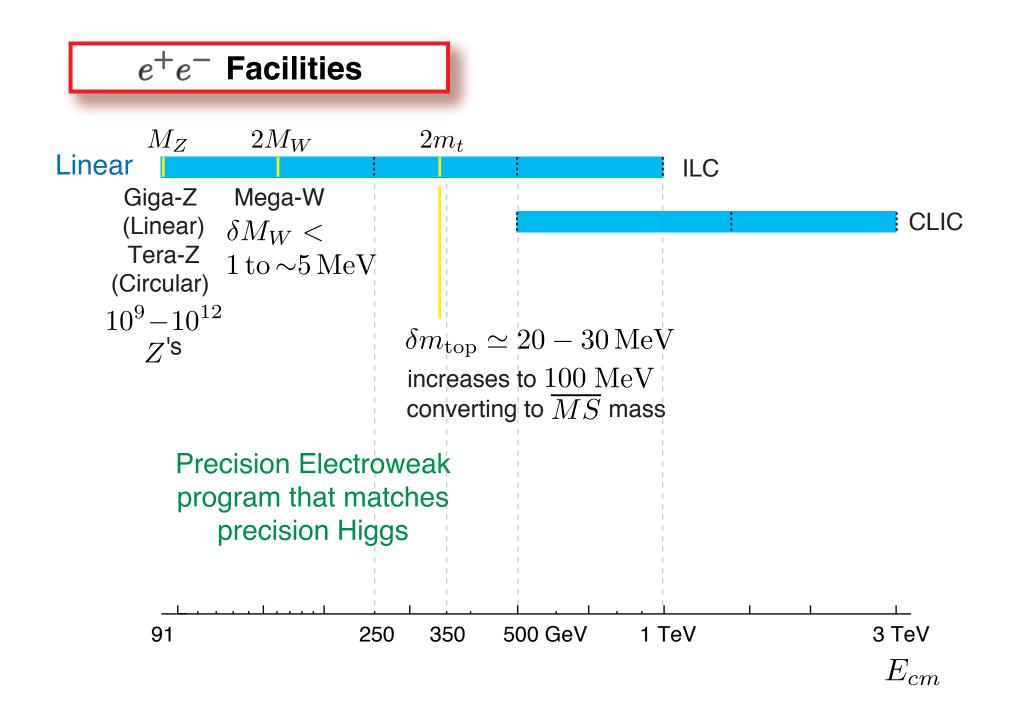


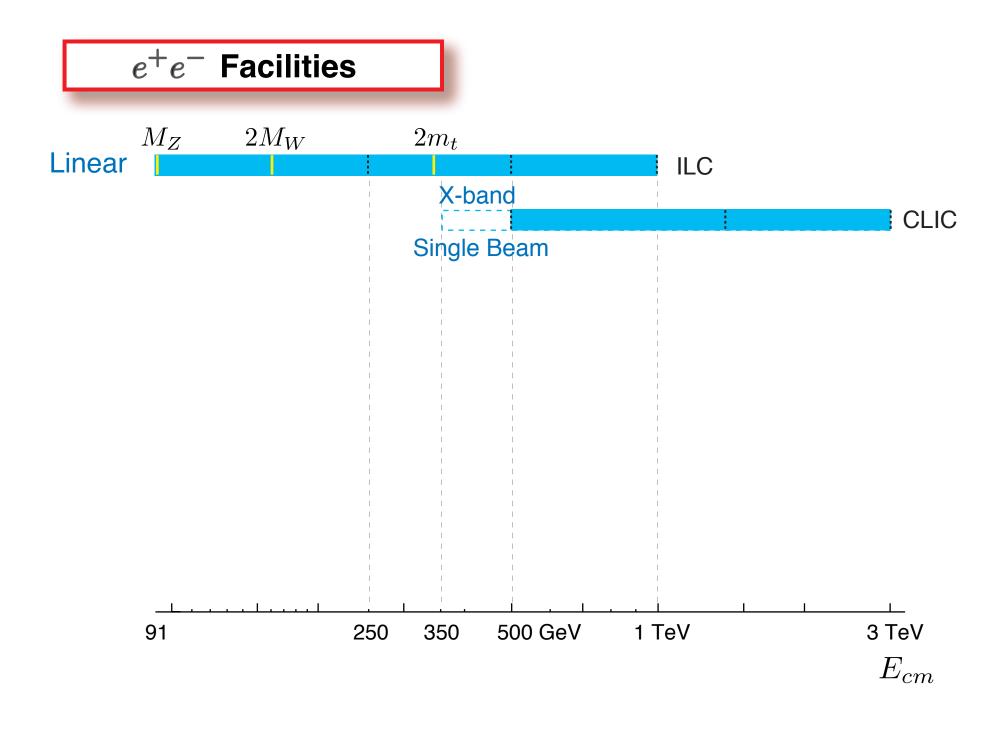
• Fusion

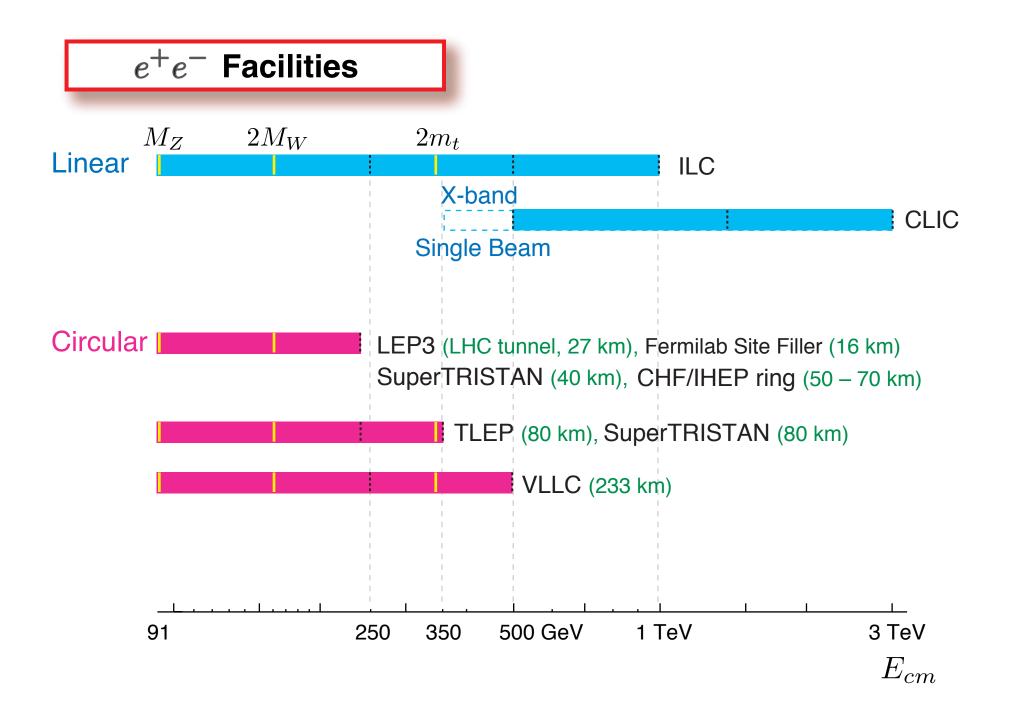


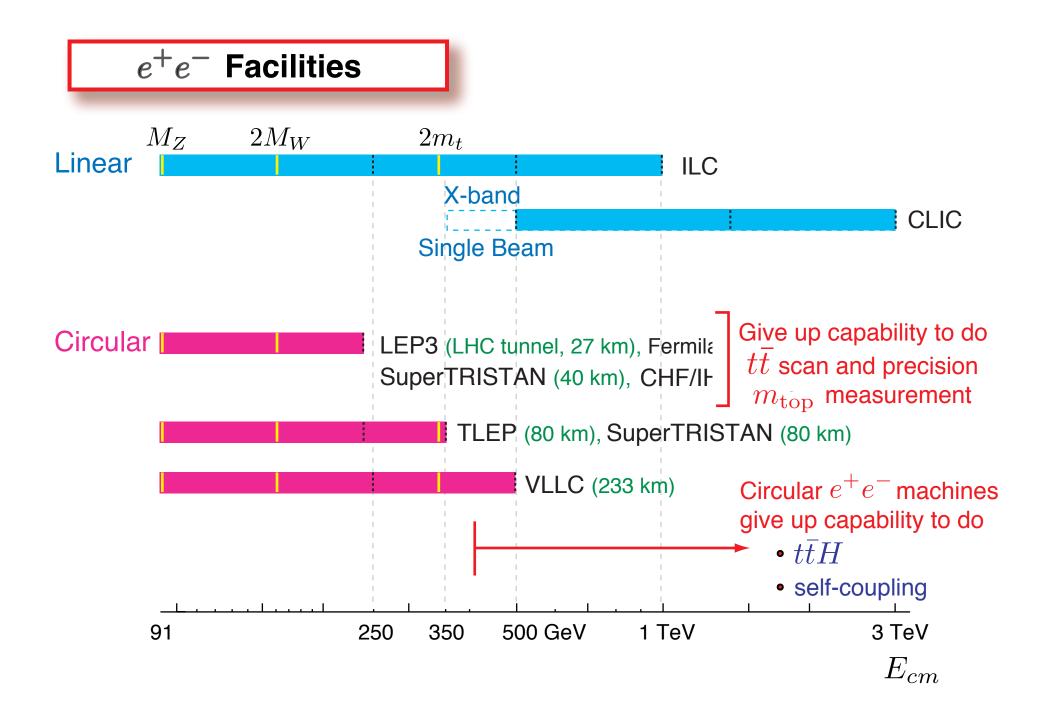
- (direct) coupling to top
- self-coupling

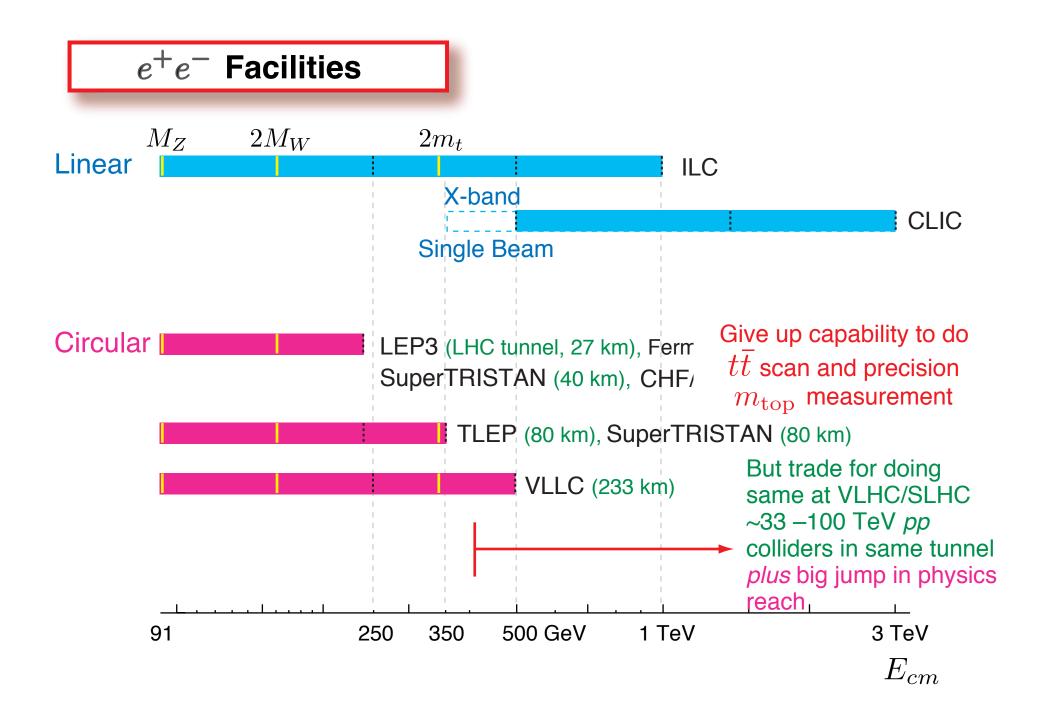

• "Higgs"strahlung

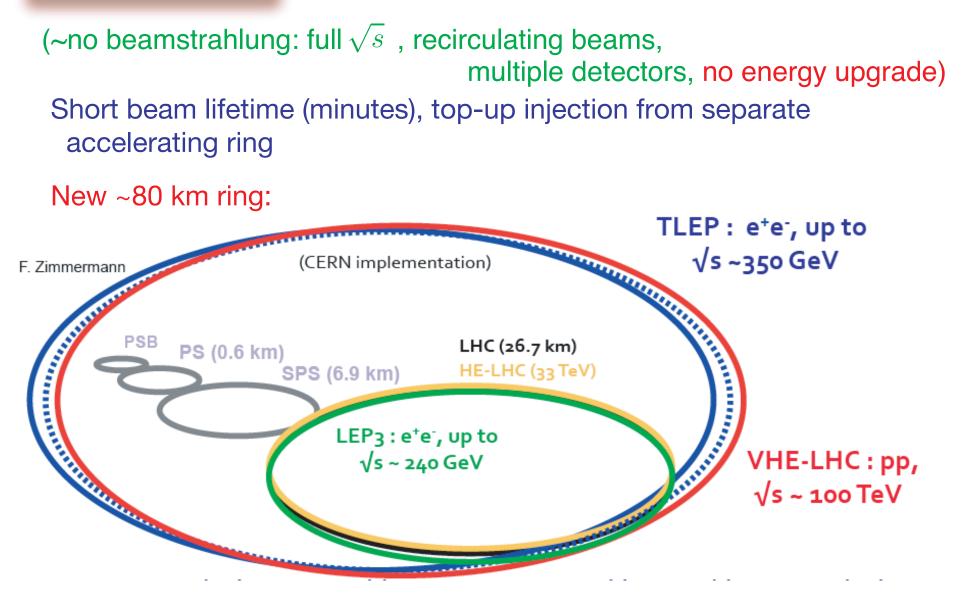



• Fusion


Typical ILC program, 3 – 5 years each energy:

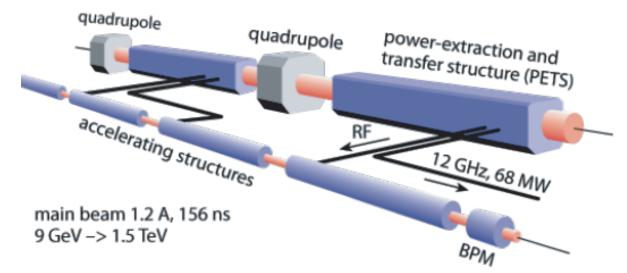

	250 GeV	350 GeV	500 GeV	1 TeV	1.5 TeV	3 TeV
$\sigma(e^+e^- \rightarrow ZH)$	300 fb	129 fb	57 fb	13 fb	6 fb	1 fb
$\sigma(e^+e^- \rightarrow vvH)$	18 fb	30 fb	75 fb	210 fb	309 fb	484 fb
Int. Luminosity	250 fb ⁻¹	350 fb ⁻¹	500 fb ⁻¹	1 ab ⁻¹	1.5 ab ⁻¹	2 ab ⁻¹
# ZH events	75,000	45,500	28,500	13,000	7,500	2,000
# vvH events	4,500	10,500	37,500	210,000	460,000	970,000
	Polarized					





Circular

• At White Paper stage, planning Conceptual Design Report

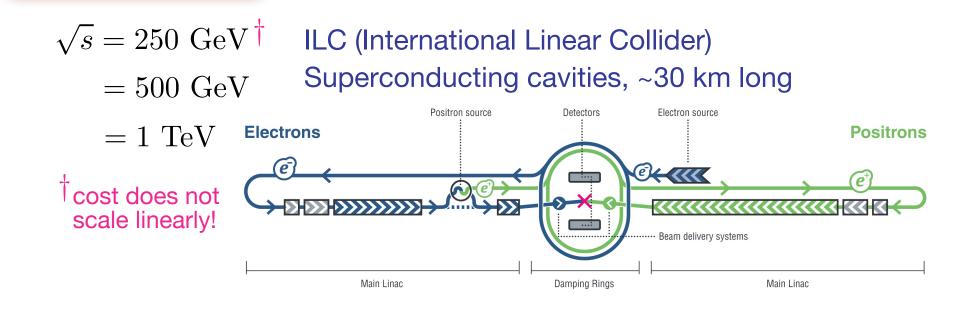

Linear

 $\sqrt{s} = 500 \text{ GeV}$ = 1.5 TeV = 3 TeV

(looking at lower energy options)

drive beam 100 A, 239 ns 2.38 GeV -> 240 MeV

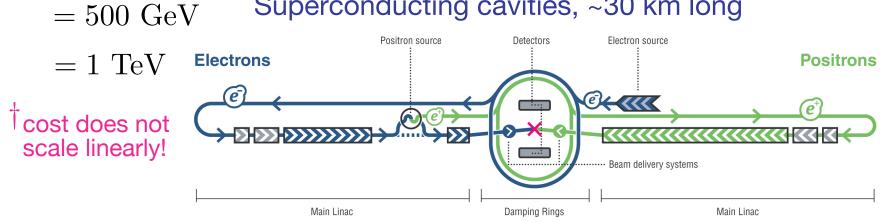
 Conceptual Design Report completed in 2012 http://clic-study.org/accelerator/CLIC-ConceptDesignRep.php

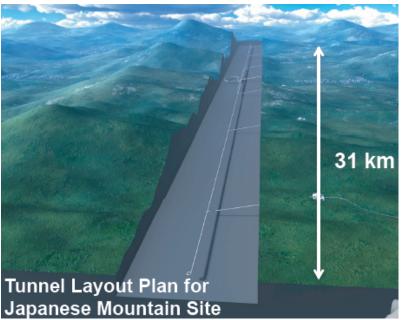


CLIC Staging Plan

CLIC two-beam scheme Need to operate at compatible with energy staging lower than nominal energy to provide the optimal machine single bunch 0.9 for a large energy range. train 0.8 Linac 1 I.P. Linac 2 0.7 L0.01/L0.01,0 Lower energy machine can run 0.6 most of the time during the 0.5 0.5 TeV Stage 0.4 construction of the next stage. Injector Complex 0.3 **≺**4 km≯ **≺**4 km≯ 0.2 Recently studies have begun 0.1 on a ~375 GeV first stage with 0 1.5 2.5 2 0.5 1 3 single beam, switching to two-E_{cm} [TeV] beam at higher energies which reuses the low energy facilities. Linac 1 I.P. Linac 2 1–2 TeV Stage Injector Complex 7.0-14 km 7.0-14 km ~20-34 km I.P. Linac 1 Linac 2 3 TeV Stage Injector Complex - 3 km -3 km ⁻ -20.8 km 20.8 km 48.2 km

Linear




 ILC Technical Design Report (2013) (including full costing) Draft versions of Detailed Baseline Design Report, Physics & Detectors: http://ific.uv.es/~fuster/DBD-Chapters/ Final version

(including Accelerator via multi-year Global Design Effort) will be available in 2013

Linear

 $\sqrt{s} = 250 \text{ GeV}^{\dagger}$ ILC (International Linear Collider) - 500 GeV Superconducting cavities, ~30 km long

Implication of Higgs discovery: political trigger point

Hitoshi Muryama, BNL Energy Frontier Meeting

https://indico.bnl.gov/materialDisplay.py? contribId=57&sessionId=11&materialId=slides&confId=571

Tomohiko Tanabe, Princeton Snowmass Higgs Meeting

http://physics.princeton.edu/indico/contributionDisplay.py? contribId=13&sessionId=7&confId=127

• March 2012: Japan Association of High Energy Physicists:

"Should a new particle such as a Higgs boson with a mass below approximately 1~TeV be confirmed at LHC, Japan should take the leadership role in an early realization of an e+e- linear collider. In particular, if the particle is light, experiments at low collision energy should be started at the earliest possible time."

• Oct. 2012: Japan Association of High Energy Physicists:

"On the basis of these developments and following the subcommittee's recommendation on ILC, JAHEP proposes that ILC be constructed in Japan as a global project with the agreement of and participation by the international community. Staging:

- A Higgs factory with a CM energy of ~250 GeV to start
- Upgraded in stages to ~500 GeV (ILC baseline)
- Technical expandability to ~1 TeV to be secured

• KEK 2013 Roadmap:

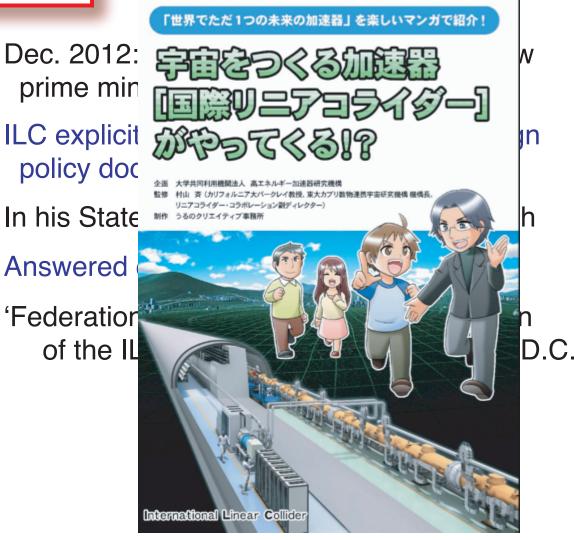
"aims at starting the construction under international framework within the duration of this roadmap (5 years from 2014)."

Guideline for cost sharing

The host country to cover 50% of the expenses (construction) of the overall project of the 500 GeV machine.

The actual contribution, however, should be left to negotiations among the governments.

Dec. 2012: new political party elected, new prime minister Shinzo Abe

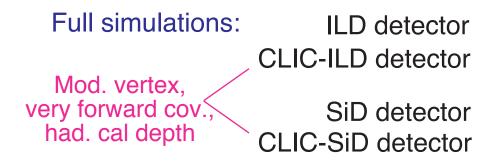

ILC explicited mentioned twice in campaign policy document

In his State of the Union equivalent speech

Answered questions on it in parliament

'Federation of Diet Members for Promotion of the ILC', two ministers to be visiting D.C.

LC Organization


Studies of measurements of mass, J^{PC}, couplings, etc., going on for ~20 years so generally mature, in decent shape, and fairly up-to-date, but still holes, always room for improvements, and *now responding to 125 GeV state:* white papers for Snowmass

Accelerator Physics

Recent documents:

- ILC Reference Design Report V2: Physics, arXiv:0709.1893
- ILC Detailed Baseline Design Report/Physics, Icsim.org/papers/DBDPhysics.pdf
- CLIC Conceptual Design Report, arXiv:1202.5940

TPC-based tracking, arXiv:1006.3396

(draft)

Silicon-based tracking, arXiv:0911.0066

e^+e^- Higgs Factories

LHC already and likely to continue doing a spectacular job!

Necessary increased precision on:

- Mass
- CP admixture
- Separate cross sections
- Separate branching fractions
- Total width

Remember: if expect deviations of only a few %, need few % for a 5σ "discovery"...

Complementary to LHC

e^+e^- Higgs Factories

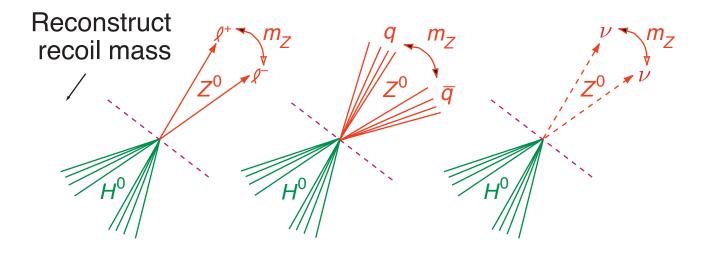
LHC already and likely to continue doing a spectacular job!

Necessary increased precision on:

- Mass
- CP admixture
- Separate cross sections
- Separate branching fractions
- Total width

Remember: if expect deviations of only a few %,

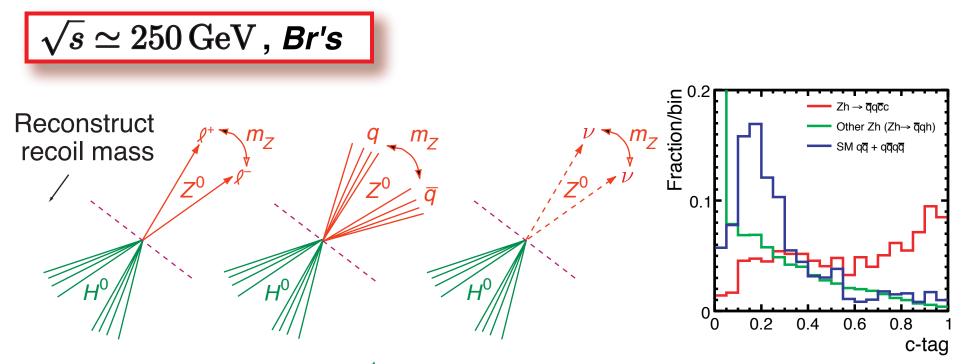
need $\frac{\text{few \%}}{5}$ for a 5σ "discovery"...!

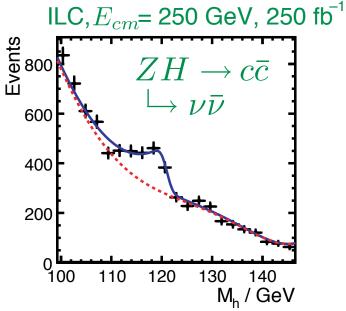

...although there may be patterns:

MSSM / Type II 2HDM +15% +10% +5% 0% -5% -10% -15%

Complementary to LHC

$\sqrt{s}\simeq 250\,{ m GeV}$, Cross Section The first step... • $\sigma(ZH)$ measurement independent Reconstruct of Higgs decay mode recoil mass $m_{\rm recoil}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |\vec{p}_{\ell\ell}|^2$ $\Delta m_H \simeq 32 \,\mathrm{MeV}$ $250\,\mathrm{GeV}$ $350\,\mathrm{GeV}$ ILD@ILC, E_{cm} = 250 GeV, 250 fb⁻¹ \sqrt{s} Events a) $250 \, {\rm fb}^{-1}$ Int. \mathcal{L} $350 \, {\rm fb}^{-1}$ ZH→μ⁺μ⁻X Signal+Background $\Delta \sigma_{ZH} / \sigma_{ZH}$ 2.5%4%100 Fitted signal+background Signal $\Delta g_{HZZ}/g_{HZZ}$ 1.3%2%----- Fitted background 50 So important Can we do better than this? (small systematics, e.g., lumi syst., 115 120 125 130 135 140 understanding of isolated leptons) m_{recoil} /GeV

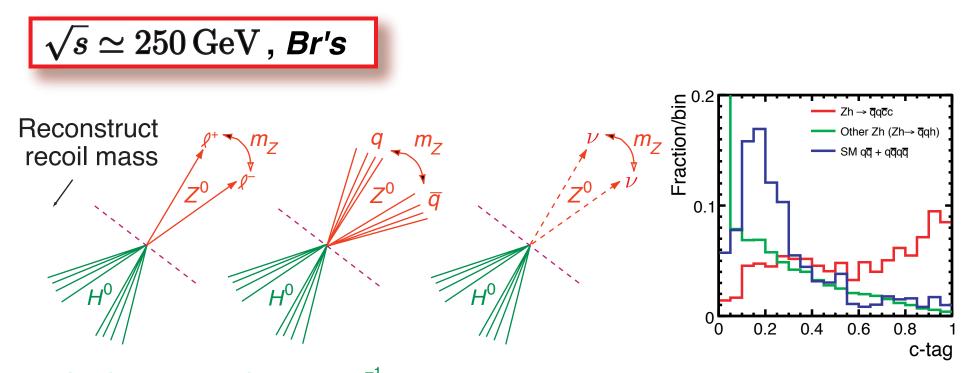

 $\sqrt{s}\simeq 250\,{
m GeV}$, Br's

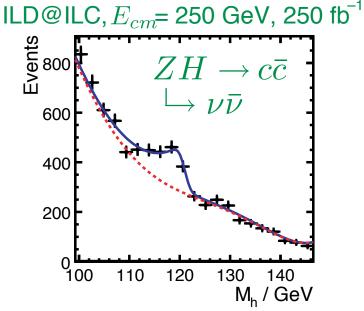


 Completely model independent measurements of *Br'*s/couplings (instead of σ·Br as LHC)
 including to invisible/dark matter or *exotic* decays

 $\mathcal{B}(H \to \text{invis.}) < 0.8\% (95\% \text{ C.L.})$

Essential! Could be happening at LHC and we would not know

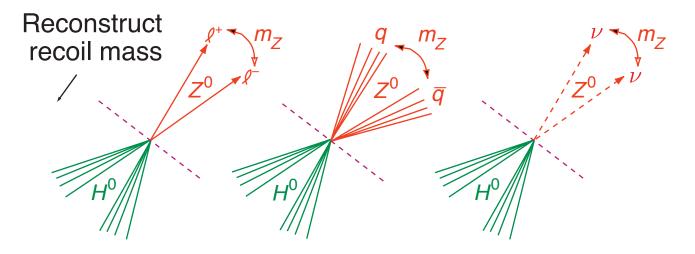


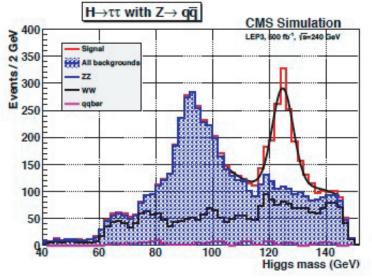

 Completely model independent measurements of *Br*'s/couplings (instead of σ·Br as LHC) including to invisible/dark matter or *exotic* decays

$$\Delta(\sigma \cdot \mathcal{B}(H \to c\bar{c})) / (\sigma \cdot \mathcal{B}) = 6.9\%$$

Similarly:

 $\Delta(\sigma \cdot \mathcal{B}(H \to b\bar{b}))/(\sigma \cdot \mathcal{B}) = 1.0\%$




- Completely model independent measurements of *Br's*/couplings (instead of σ·Br as LHC) including to invisible/dark matter or *exotic* decays
- extraction of *Br*'s will always include $\oplus \Delta(\sigma_{ZH})$ (e.g., ±2.5%)

(although correlated across all Br's)

 $\sqrt{s}\simeq 250\,{
m GeV}$, *Br's*

CMS@LEP3, E_{cm} = 240 GeV, 500 fb⁻¹

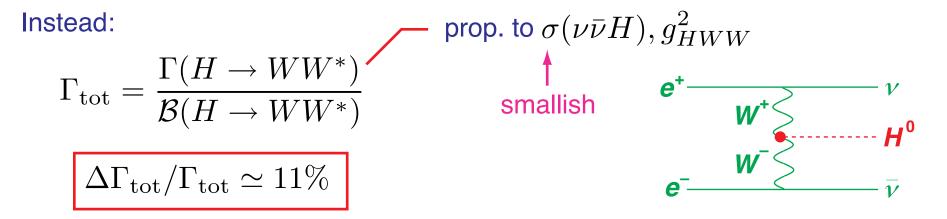
 Completely model independent measurements of *Br's*/couplings (instead of σ·Br as LHC) including to invisible/dark matter or exotic decays

$$ZH \to \tau^+ \tau$$
$$\downarrow q\bar{q}$$

• Experimentally, not much difference between circular and linear machines

 $\sqrt{s}\simeq 250\,{
m GeV}$, Br's

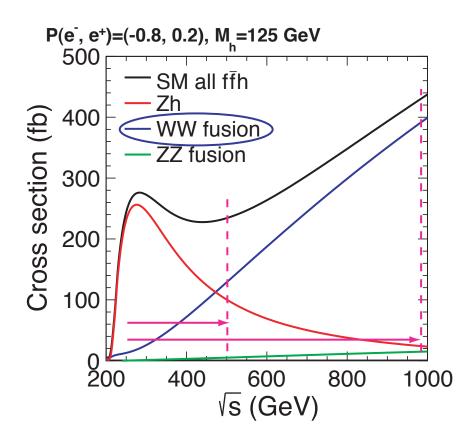
ILC, <i>E_{cm}</i> = 250 GeV, 250 fb	¹ , polarization (e^{2})	$^{-}, e^{+}) =$	(-0.8, +0.3)
--	---------------------------------------	------------------	--------------


mode	BR	$\sigma \cdot BR (\mathrm{fb})$	$N_{evt}/250{\rm fb}^{-1}$	$\Delta(\sigma BR)/(\sigma BR)$	$\Delta BR/BR$
$h \to b\overline{b}$	65.7%	232.8	58199	1.0%	2.7%
$h \to c\overline{c}$	3.6%	12.7	3187	6.9%	7.3%
$h \to gg$	5.5%	19.5	4864	8.5%	8.9%
$h \to WW^*$	15.0%	53.1	13281	8.1%	8.5%
$h \to \tau^+ \tau^-$	8.0%	28.2	7050	3.6%	4.4%
$h \to ZZ^*$	1.7%	6.1	1523	26%	26%
$h \to \gamma \gamma$	0.29%	1.02	255	23- $30%$	23-30%

Physics Volume, Techical Design Report (DBD), updated March 31

 $\sqrt{s}\simeq 250\,{
m GeV}$, Total Width

$$\Gamma_{\rm tot} = \frac{\Gamma(H \to ZZ^*)}{\mathcal{B}(H \to ZZ^*)} - \text{small, large error}$$


How to do better??

 $\sqrt{s} \simeq 500 \, {
m GeV}$, Total Width

Instead:

– prop. to
$$\sigma(
uar{
u}H), g^2_{HWW}$$

$$\Gamma_{\rm tot} = \frac{\Gamma(H \to WW^*)}{\mathcal{B}(H \to WW^*)}$$

Move to higher energies, e.g., $\sqrt{s} = 500 \, {\rm GeV}$

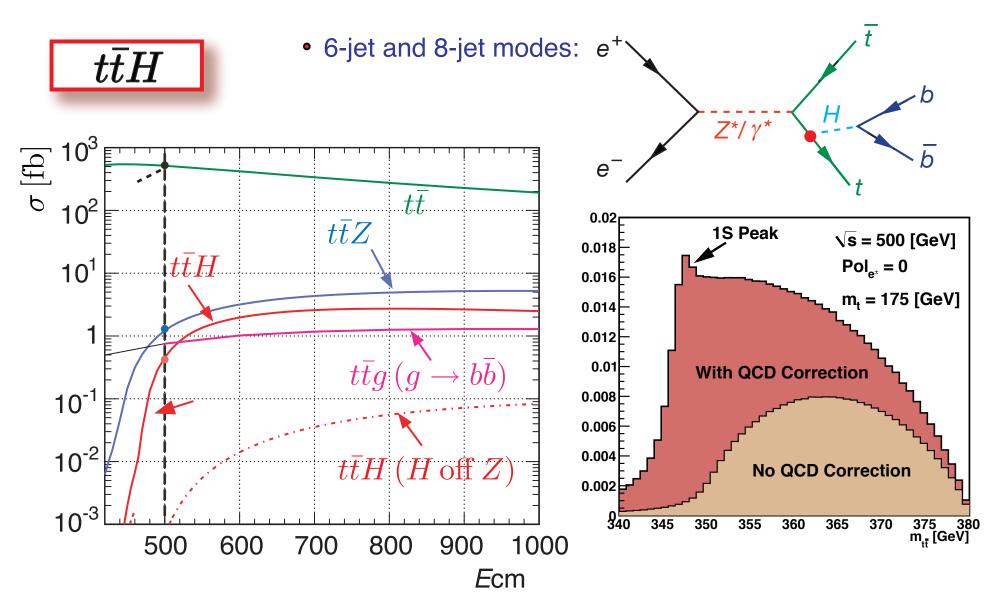
e

e

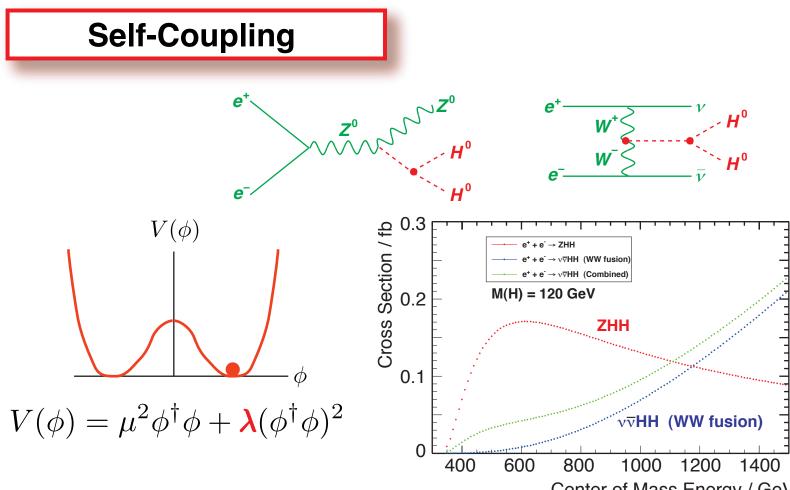
W

W

 $\boldsymbol{\nu}$

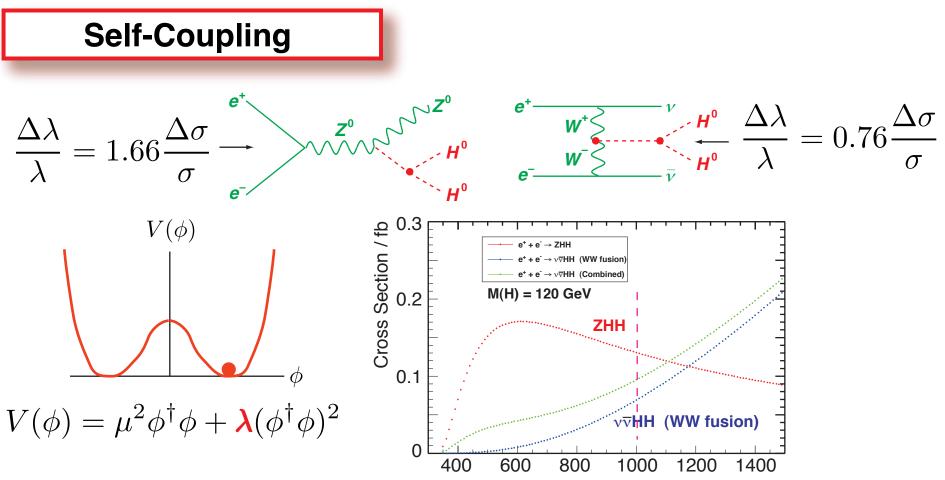

1/

 H^0


$$\Delta \Gamma_{\rm tot} / \Gamma_{\rm tot} \simeq 6\%$$

Keep measuring *Br*'s!

...and now the stuff that is tough for most machines...


- Now feasible at 500 GeV! Complicated, multi-jet system, four *b* jets $\Delta g_{ttH}/g_{ttH} = 10\% \ (1 \ {\rm ab}^{-1})$
- Better at higher energies (aside from larger fraction of non-ttH components)

Center of Mass Energy / GeV

- Tough analysis, low rate
- Separate non-self-coupling contributions by *HH* invariant mass

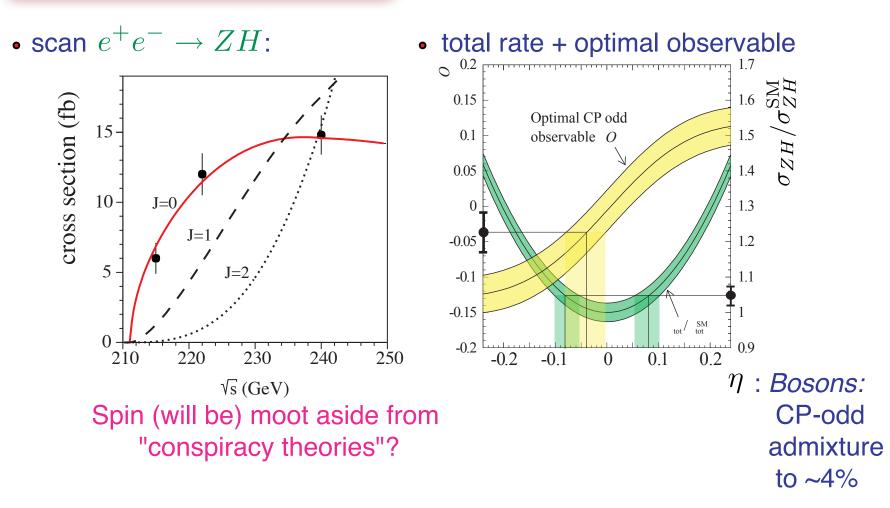
- Uses $H \to b \overline{b}\,$; b-jet "color singlet" assignment is tough

Center of Mass Energy / GeV

- Tough analysis, low rate
- Separate non-self-coupling contributions by *HH* invariant mass

- Uses $H \to b \overline{b}\,$; b-jet "color singlet" assignment is tough

Tough Stuff


process	$\sqrt{s} [\text{GeV}]$	$\mathcal{L} [ab^{-1}]$	(P_{e^-}, P_{e^+})	$(\Delta \sigma \cdot BR) / (\sigma \cdot BR)$	$\Delta g/g$
$t\overline{t}h$	500	1	(-0.8,+0.3)	25%	13%
Zhh	500	2	(-0.8, +0.3)	32% –	→ 53%
$t\bar{t}h$	1000	1	(-0.8, +0.2)	8.7%	4.5%
$ u ar{ u} hh$	1000	2	(-0.8, +0.2)	26% –	→ 21%

Collecting...

	$\Delta(\sigma \cdot BR) / (\sigma \cdot BR)$				
\sqrt{s} and \mathcal{L}	$250 {\rm fb}^{-1}$ at $250 {\rm GeV}$		$500 {\rm fb^{-1}}$ at $500 {\rm GeV}$		$1 \mathrm{ab}^{-1} \mathrm{at} 1 \mathrm{TeV}$
(P_{e^-}, P_{e^+})	(-0.8, +0.3)		(-0.8, +0.3)		(-0.8, +0.2)
mode	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h$	$ u \overline{ u} h $
$h \to b\overline{b}$	1.1%	10.5%	1.8%	0.66%	0.47%
$h \to c\overline{c}$	7.4%	-	12%	6.2%	7.6%
$h \to gg$	9.1%	-	14%	4.1%	3.1%
$h \to WW^*$	6.4%	-	9.2%	2.6%	3.3%
$h \to \tau^+ \tau^-$	4.2%	-	5.4%	14%	3.5%
$h \to ZZ^*$	19%	-	25%	8.2%	4.4%
$h \to \gamma \gamma$	29-38%	-	29-38%	20-26%	7-10%
$h \to \mu^+ \mu^-$	100%	-	-	-	32%

...input to global analysis

Spin & CP

Fermions:

• Angular analysis of decay products of polarized taus in $H\to \tau^+\tau^-$, CP-oddadmixture to ~ 6°

Combination Assumptions

More constrained

•
$$\sum_{i} \mathcal{B}_i = 1$$

• $|g_{HWW}| < g_{HWW}|_{SM}$ $|g_{HZZ}| < g_{HZZ}|_{SM}$

•
$$g_{HWW}/g_{HZZ} = \cos^2 \theta_w$$

• No invisible or undetectable Higgs decays

Combination Assumptions

 \checkmark

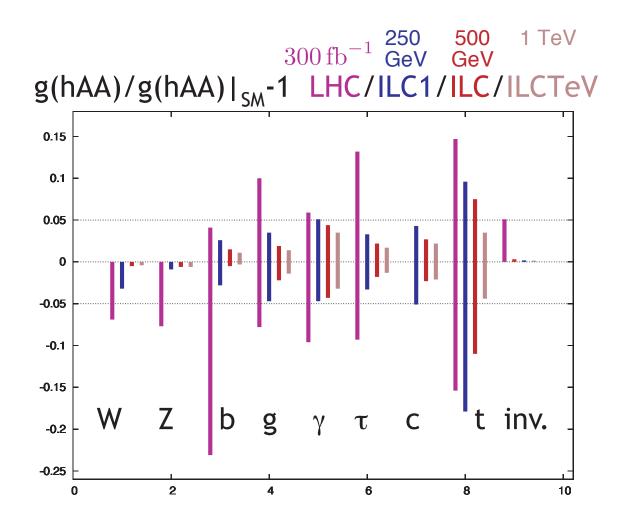
More constrained

•
$$\sum_{i} \mathcal{B}_{i} = 1$$

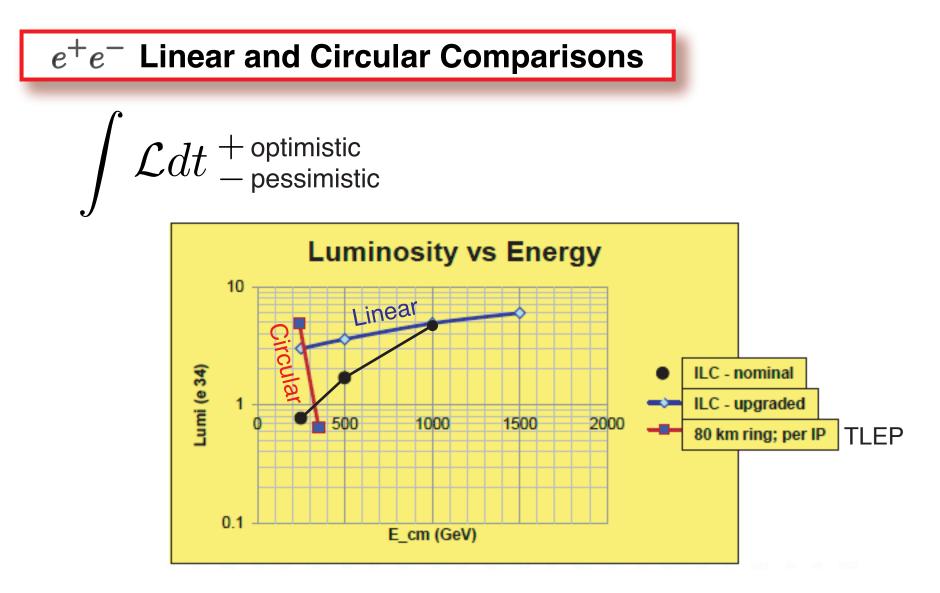
• $|g_{HWW}| < g_{HWW}|_{SM}$ $|g_{HZZ}| < g_{HZZ}|_{SM}$

•
$$g_{HWW}/g_{HZZ} = \cos^2 \theta_w$$

• No invisible or undetectable Higgs decays


Global Analysis

Expected Higgs boson coupling precisions in %:


	$300{\rm fb}^-$	1 250 fb ⁻¹	$500{\rm fb}^{-1}$	$1000{\rm fb}^{-1}$
Mode	LHC	ILC(250)	ILC(500)	ILC(1000)
WW	4.1	1.9	0.24	0.17
ZZ	4.5	0.44	0.30	0.27
$b\overline{b}$	13.6	2.7	0.94	0.69
gg	8.9	4.0	2.0	1.4
$\gamma\gamma$	7.8	4.9	4.3	3.3
$ au^+ au^-$	11.4	3.3	1.9	1.4
$c\overline{c}$	—	4.7	2.5	2.1
$t\overline{t}$	15.6	14.2	9.3	3.9
$\mu^+\mu^-$		—	—	16.
self		—	—	20.
BR(invis.)	< 9	< 0.44	< 0.30	< 0.26
$\Gamma_{ m tot}$	20.3	4.8	1.6	1.2

Physics Volume, ILC Techical Design Report (DBD), updated March 31 arXiv:1207.2516 [hep-ph]

Global Analysis

• In consultation with accelerator physicists, proponents investigating luminosity upgrades and their impact

$$\mathcal{L} = 0.75 \rightarrow 3.0 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

e^+e^- Linear and Circular Comparisons

Example Apples and Oranges:

- Assumptions going into global analyses of Higgs couplings
- Ignoring multiple IP's/detectors of circular machines
- Beam-beam effects of multiple IP's tend to reduce luminosity
- Not including correlated uncertainties into table entries (e.g., σ_{ZH})
- What's a year?

Snowmass year = 1×10^7 sec (usually to take into account uptime)

ILC LEP3 $\mathcal{L} = 0.75$ $1.0 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

"The integrated luminosities for the ILC and CLIC were based on a model with slow initial build-up for machine operation."

Physics case as a Higgs Factory (1)

• Number of Higgs bosons produced at $\sqrt{s} = 240-250$ GeV

	ILC-250	LEP3-240	TLEP-240	
Lumi / IP / 5 years	250 fb ⁻¹	500 fb ^{−1}	2.5 ab ⁻¹	
# IP	1	2 - 4	2 - 4	
Lumi / 5 years	250 fb ^{−1}	1 - 2 ab ⁻¹	5 - 10 ab ⁻¹	
Beam Polarization	80%, 30%	-	-	
L _{o.01} (beamstrahlung)	86%	100%	100%	
Number of Higgs	70,000	400,000	2,000,000	
Upgradeable to	ILC 1TeV CLIC 3TeV ?	HE-LHC 33 TeV	VHE-LHC 100 TeV	

- In a given amount of time, Higgs coupling precisions scale like
 - e.g., for g_{HZZ} : 1.5% for ILC : 0.65% for LEP3 : 0.2% for TLEP

e^+e^- Linear and Circular Comparisons

My personal take:

- LHC is where Higgs properties are being measured, so fully exploit!
- Taking uncertainties into account, for direct Higgs properties:

ILC (at only 250) ~ 240 GeV Circular (e.g., LEP) (but lose top threshold scan!!)

• ILC at higher energies is essential; momentum in Japan

Circular machine luminosity roughly prop. to circumference

 For sheer luminosity and follow-up physics reach, hard to beat TLEP + pp collider, but what about time scales and total cost? (both sizes deserve CDR...)

e^+e^- Linear and Circular Comparisons

My personal take:

- LHC is where Higgs properties *are* being measured, so fully exploit!
- Taking uncertainties into account, for direct Higgs properties:

ILC (at only 250) ~ 240 GeV Circular (e.g., LEP) (but lose top threshold scan!!)

- ILC at higher energies is essential; momentum in Japan
- For sheer luminosity and follow-up physics reach, hard to beat TLEP + HE pp collider, but what about time scales and total cost? (deserves CDR...)

Discussion welcome!