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Example of Tsallis distribution: application to PHENIX data

do A

E =

d3p (1+m-|-_mjn

Phenix Coll., PRD 83,

052004 (2011)

Fig. 12

Invariant differential
cross sections of
different particles
measured in p p
collisions at Vs = 200
GeV in various decay
modes.
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Tsallis distribution can describe LHC py distributions
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Tsallis distribution can describe LHC py distributions
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Good Tsallis py fits raise guestions

What is the physical meaning of n ?

If n is the power index of 1/p;", thenwhyis n~7,
whereas pQCD predicts n~4 ?

Why are there only few degrees of freedom over such a large p; domain ?
Do multiple parton collisions play any role in modifying the power index n?

Does the hard scattering process contribute significantly to the production
of low-p; hadrons?

What is the origin of low-p; part of Tsallis fits ?



Parton Multiple Scattering

For the collision of a parton a with a target of A partons in sequence without centrality
selection, the differential c distribution is given by

rer
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The contribution from the single collision dominates, but high multiple
collisions comes in at lower p; and for more central collisions




Parton Multiple Scattering

For the collision of a parton a with a target of A partons in sequence without centrality
selection, the differential c distribution is given by

rer

a : g q" :_‘3-____
qu; %qg Eg% g
d, b, b, d

C
q;\f’
b d, by dy

One expects then that for more and more central collisions,
contributions with a greater number of multiple parton collisions
gains in importance. As a conseguence, the power index n is
expected to become greater when we select more central collisions

(subject to experimental verification).

The contribution from the single collision dominates, but high multiple
collisions comes in at lower p; and for more central collisions




Good Tsallis py fits raise guestions

 What is the physical meaning of n ?

e If nis the power index of 1/p:", thenwhvis n~7,

We seek answers to these questions from the

relativistic hard-scattering (RHS) model

[ Blankebecler, Brodsky et al., PRD10(1974)2973; D12(1975)3469; D15(1977)3321 ]
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 What is the origin of low-p- part of Tsallis fits ?



Relativistic Hard-Scattering (RHS) Model
- Approximate Hard-Scattering Integral -

do(AB — cX do(ab —cd \
(p o ) _ ZjdxadeGa/A(Xa)Gb/B (%) Ec ( )

d’p - d°p
The basic differential cross section is
do(ab—>cd) S do(ab— cd)
c d3p Tz dt

E

5SS+t +0).

We assume : X, G, A (X,) =Aa(1—Xa)g,
For central rapidity,

d°*c(AB — cX)
P d3c

17|~ 0, we obtain

-y 3*;% (1-%,0)9(1-%,0)9

1 [a-x " (1-x,)  do(ab—scd)
k e (=22, | {1 (xpg + 22/, )/ 2 dt/

C.+C 1—72/x T’ 1—72/x
X, =1 rzi, XaO:Xc+Tc\/ €L Xy =247, c "¢

J b0
1-X, X 1-X,

E
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RHS Model - The Power Index in Jet Production

, , do(ab—>cd) «f
For gg — 99,99’ —qq’,and qg — qg, ( di )OC C(fT)
!
The analytical formula is
3 da(ABB—> cX) . 1
d C (CT/\/g)UZ

Forn ~0, X, (c;)=X%,(c;)=2x.(c. ) =2c. /+/s,theanalytical formulais

“S(ff) (1= % (6)) I (L %y (¢, )9

= do(AB—cX) _al(e;) (L-2x(c;))? (L-2x,(¢;))”
c dBC C¢+1/2 /(\/§)1/2
We change notations ¢ — p and introduce power index n

= do(AB— pX) _al(pr) 1-2x(p))Y (L-2x(p,))”
P d°p N /(4/5)2
where n=4+1/2 forLOpQCD. g,,=g=6-10 (wetakeg=6 [18])

[18] D. W. Duke and J. F. Owens, Phy. Rev D30, 49 (1984).



How to get n from data ?

Method (1),
Work at a fixed /s, and makea log-log plot of o, and p;

(1) in the lower p; region, 6 ——
the S|Ope gIVGS n, 10 CMS jet p. Data, PRL 107,132001(11)
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How to get n from data ?

Method (11) [10]

Write the analytical formula
= do(AB— pX) _a(pr) (1-2%,(py)° A-2x(py))°
3

b dp o i(Ws)H 2
with X, = pT/\E as

do(AB > pX) _al(pr) (L-2%,(pr))? L-2%,(p;))”
P (r3)" 1) 2
Ata fixed x,, we look at two different energies, /s, and 4/s,

In [O-inv(\/g’ Xc)/ainv(\/?’ Xc)] ~ n(X )_E
In[ys, /4/s,] 72

[10] F. Arleo, S. Brodsky, D. S. Hwang, and A. M. Sickles, Phys. Rev. Lett. 105, 062002 (2010).
13
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How to get n from data ?

Method (I11)
Ata fixed +/s, consider running coupling constant
127
as (Q(CT ))

- 27In(C+Q*A%)
Acep =0.25GeV = o (M2 )=0.1184;
C=10= . (Q o€ Aoep )z 0.6 in hadron spectroscopy studies[17]

/For Q = ¢, search for n by fitting experimental data at 7 ~ 0 A

1 1
= 4o (AB > X) | AG(Q(c) (-x,) P 2 (A-x,0) ™ "2

C dc” e\ 1-x, y

\_

Notice: parameter C regularizes the coupling constant for small values of Q(c;).

[17] C. Y. Wong, E. S. Swanson, and T. Barnes, Phy. Rev. C, 65, 014903 (2001}4



DO jet data can be described by RHS model
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Comparison of the relativistic hard-scattering model results for jet production, Eq. (22)
(solid curves), with experimental do/dn E; dE; data from the DO Collaboration, for hadron
jet production within |n|<0.5, in pp collision at (a) Vs=1.80 TeV, and (b) Vs=0.63 TeV.



ALICE and CMS |et data can be described by RHS model

T T T T T T T T |

ALICE jet p,, Data, FLB772, 262(13)

pp collisions at Vs=276TeV,Inl<0.5
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Except for the CMS data at 7 TeV that may need further re-examination, the power
indices extracted for hadron jet production are in approximate agreement with the
value of n=4.5 in Eqg. (19) and with previous analysis in [10], indicating the
approximate validity of the hard scattering model for jet production in hadron-hadron
collisions, with the predominant a2, / c4; parton-parton differential cross section as

predicted by pQCD.

Collaboration N R 7
DO pp at 1.80 TeV | 0.7 | || < 0.7
DO pp at 0.63 TeV | 0.7 | || < 0.7

ALICE pp at 2.76 TeV | 0.2 | || < 0.5
ALICE pp at 276 TeV | 0.4 | || < 0.5
CMS pp at 7 TeV 0.5 | || < 0.5

[10] F. Arleo, S. Brodsky, D. S. Hwang, and A. M. Sickles, Phys. Rev. Lett. 105, 062002 (2010).



Evolution from jet to hadrons

The evolution from a jet to hadrons passes through the
stages of

(1) showering (and/or fragmentation),

(i) hadronization.

18



Phenomenological Modifications for Hadron Production

—|—E +E
Jet e d°(ABo0X) _ Ad(@ () (%)™ 2 (1-%0) T 2

production > C dc” el J1-x,

hadrons

(*) For the case of hadron production, it is necessary to take into account additional
effects. Jets undergoes fragmentation and hadronization to produce the observed
hadrons.

(*) For example: from the fragmentation function for a parent parton jet to fragment
into hadrons, an observed hadron p of transverse momentum p- can be estimated
to arise (on the average) from the fragmentation of a parent jet ¢ with transverse

momentum <c; > =2.3p- [11].

[11] C. Y. Wong and G. Wilk, Phys. Rev. D87, 114007 (2013). 19



Effects of showering (and/or fragmentation) on power law

If the fragmentation is such that p = zc,
do(AB — pX do(AB — cX
) ( dgp p ) deDp/c( )jd4 ( d ) ( _ZC)

E

-[%p, (g %A% (o100

@@ %(6) (- %))’

Pr

where C; =P <>

1 dz a1 dz s
o (e (o) /[,

The power law and power index are
preserved under p=zc fragmentation 20



Showering and the power index

As a result of parton showering involving virtuality degradation, the
leading hadron momentum p and the showering parton momentum c
may not be linearly related and can expect that

p=zc™

where parameter p describes details of virtuality degradation. As a
consequence, the power index can be changed under parton
showering.

21



After the fragmentation and showering of the parton c to hadron p, the hard-scattering cross

section for the scattering in terms of hadron momentum p; becomes

d*c(AB — pX) d’c(AB —cX) dc,

dydp,  dydc,  dp,
oc ( )(1 Xa (_ )) (1 Xbo(C ))ga dc;
C_IA:+1/2 de
2_lu
where de; __1 [aijl”
dpr  1-u Pro

Here a is a constant relating the scales of virtuality and transverse momentum. Therefore
under the fragmentation c— p, the hard scattering cross section for AB — pX becomes:

d°0(AB — pX)  ag(Cr J1—Xeo(Cr))* (L= X0 (C1 )™

!

n

dydp P
n—2u

1-u

nN=| ——— | with n=4+1/2

22



After all this one gets power-law behavior but not Tsallis formula:

d

'0(AB - pX) a6 i x(C

)" (0% (G )™

dydp,

n!

Py

(*)

Low p+is not correct.

23



After all this one gets power-law behavior but not Tsallis formula:

d’c(AB — pX)OCaS( =%, (c; Z) (1—x,(C; )" ()

dydp, P

Low p+is not correct. The proposed possible remedy is

to replace the usual parameter p, (~1+2 GeV) dividing phase space into
part governed by ,soft physics, (pr<p,) from that governed by ,hard
physics” (pr=py) by regularizing denominator in (*),

for example by using:
d 3G(AB — pX )oc 0532 (ET )(1_ Xa0 (ET ))ga (1_ Xho (ET ))ga (@)
dyde [1+ M+ jn

2
m, =/m?+ p? N




Notice that we have just assumed

do A
the form of Tsallis formula showed E 3 =
dp m, —m)"
at the beginning: 1 + T
nt

to replace the usual parameter p, (~1+2 GeV) dividing phase space into

part governed by ,soft physics, (pr<p,) from that governed by ,hard
physics” (pr=py) by regularizing denominator in (*),

for example by using:
d 3G(AB — pX )oc 0‘32 (ET )(1_ Xa0 (ET ))ga (1_ Xho (ET ))ga
dyde [1+ M+ jn

25




In addition to the replacement

1/pr)" - 1/(1 + pr/po)"

in actual calculations we also regularize coupling constant for small
values of p; (following method proposed in hadron spectroscopic studies by
C. Y. Wong, E. S. Swanson, and T. Barnes, Phy. Rev. C, 65, 014903 (2001)).

127
27In(C+p3/ASes)

as(pT) —

Agep =0.25GeV = a4 (I\/I ; ): 0.1184:
C=10=a, (Q oc /\QC;D)z 0.6 in hadron spectroscopy studies

26



Experiments measure the differential yield in nonsingle-diffractive events, which in
our case is

d°N (AB — pX ): \/1_ m° A % (ET )(1_ Xa0 (ET ))ga (1_ XbO(ET ))ga _

dyde m? COShZ y ( - ]n
1+ —T
mTO
m* 3 ) )
) \/1_ m; cosh® y Aacg (T )L X0 (€1 ))** (1= X, (7)) -
L
Olil—(l—q)%:rq
where g 142 and T =Moo
n 0-1

27




Experiments measure the differential yield in nonsingle-diffractive events, which in
our case is

d*N(AB — pX) o m
dydp, m? cosh® y

where q=1+— and T-=

Looks like Tsallis 28




Experiments measure the differential yield in nonsingle-diffractive events, which in
our case is

d*N(AB—pX)_ |, m*  ad(e)i-x, (T)ga(1 %0(Cr))* _
dydp- m; cosh® y m,

Aas
m cosh

where q= 1+— and T =

... but with quite complicated prefactor Looks like Tsallis 29




Analysis of hadron p; distributions

Two ways to regulate the cross sections at low p, were used :

|. Linearm; :  p; > (M, +m;)

do(AB - pX) _ Aal(6) (L-2%,(6))7 (1-2%,(&))°

Ep d3 n
: (Mo + ;)

I1. Quadratic m, : pT2 —> (mTzo +mT2)

do(AB - pX) _ Aal(6) (1-2%,(6))% 1-2x(6,))°

P 3
d°p (mfy +m))" 2

E

where €, = pT<%>; <%>: I¥DP/C(Z)Z4+1/2(%) /I%Dp,c(z)z“”’zzz.%

We search for n that fits the hadron p; spectra. i
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Comparison of the experimental data for hadron production in pp collisions at the LHC
with the relativistic hard scattering model results (solid and dashed curves) (a) using
Eq. (25), with a quadratic m; dependence of the regulating function, and (b) using

Eq. (24), with a linear m; dependence of the regulating function. In both cases
regularized coupling constant ag was used.



Linear mr Quadratic m#
Eq. [Q-l) Eq. (25)
Js=1TeV [ /s=0.9TeV | \/s=TTeV [ /s=0.9TeV
n 5.69 5.86 5.45 5.49
mro (GeV) 0.804 0.634 1.09 0.837

_—

(*) For pp collisions at the LHC the power index extracted from hadron

spectra has the value of n~6 and is slightly greater than the power indices

of n~4-5 extracted from jet transverse differential cross sections.

(*) Fragmentation and showering processes increase therefore slightly the

value of the power index n of the transverse spectra.
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Relevance to Tsallis fits to p; spectra

Kl'he sucesses of the Tsallis fits to LHC high h

spectra arises from the power law of  a/p5

for the production of jets, leadingto n=4.5.
e Showering and hadronization changes n
from 4.5 to ~6.

e The additional a?(p,) and (1-2x.)?9 bring
In additional p, dependencies that lead to
an increase of n from ~6 to ~ 7 inthe

Qsallis distribution for hadron production.. /
33




Conclusions

A simple Tsallis formula can describe data with a power
Index of n ~6.6 - 7.6

A power law with a power index of n ~4 -5 can describe
the p; spectra of jets.

A reqgularized power law with a power index ofn ~ 5.5- 6
can describe (together with regularized coupling constant)
the p; spectra of hadrons for all p; .

The power index n appears to become larger as a jet
evolves into hadrons.
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