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Space-Time evolution in HI collisions	

n  Space-time extent at freeze-out reflects the characteristics of 
system evolution, such as the strength of the expansion, the 
expansion time, hadron rescattering, and so on. 

n  HBT interferometry is a powerful tool to study the space-time 
evolution in Heavy Ion collisions. 	
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HBT Interferometry	

n  1956s, R. Hanbury Brown and R. Twiss measured the angular 
diameter of Sirius. 

n  1960, Goldhaber et al. correlation among identical pions in p+p 
n  Quantum interference between two identical particles 
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Azimuthal angle dependence	

n  Angle dependence of HBT radii relative to Reaction Plane  
reflects the source shape at kinetic freeze-out. 

n  Initial spatial anisotropy causes momentum anisotropy (flow anisotropy) 

² One may expect in-plane extended source at freeze-out 
n  Final source eccentricity will depend on initial eccentricity,  

flow profile, expansion time, and viscosity etc. 
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HBT radii w.r.t Reaction Plane at RHIC	
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where the !1" !# and ! terms account for the nonparti-
cipating and participating fractions of pairs, respectively,
N is a normalization parameter, and G!q;!# is the
Gaussian correlation model [23]:

G!q;!# $ e"q2oR2
o!!#"q2sR2

s !!#"q2l R
2
l !!#"qoqsR2

os!!#: (2)

R2
i are the squared HBT radii, where the l, s, and o

subscripts indicate the long (parallel to beam), side (per-
pendicular to beam and total pair momentum), and out
(perpendicular to ql and qs) decomposition of q with an
additional cross term [27]. Fitting with Eq. (1) caused Ro
to increase 10%–20% compared to Coulomb correcting
all pairs, while Rs and Rl, respectively, are consistent
within errors.

Figure 1 shows the squared HBT radii, obtained using
Eq. (1), as a function of ! for three centrality classes. All
pairs with pair transverse momentum 0:15 % kT %
0:6 GeV=c are included, and each centrality is divided
into 12 ! bins of 15& width. The data point at ! $ " is
the reflected ! $ 0 value, and solid lines indicate Fourier
expansions of the allowed oscillations [24]:

R2
#;n!kT# $

! hR2
#!kT;!# cos!n!#i !# $ o; s; l#;

hR2
#!kT;!# sin!n!#i !# $ os#: (3)

As expected [3], the 0th-order Fourier coefficient (FC)
indicates larger apparent source sizes for more central
collisions. We verified that the 0th-order FC corresponds
to the HBT radii from an azimuthally integrated analysis.

Strong 2nd-order oscillations are observed for R2
o, R2

s ,
and R2

os, and the signs of the oscillations are qualitatively
self-consistent [10,24], though the amplitude for most-
central events is small. Similar oscillations were observed

in a statistics-limited analysis of minimum-bias Au' Au
collisions at

""""""""

sNN
p $ 130 GeV [28]. These oscillations

correspond to a pion source spatially extended perpen-
dicular to the reaction plane, as discussed below. The next
terms (4th order) in the Fourier expansions [Eq. (3)] are
consistent with zero within statistical errors.

The kT dependence of the oscillations of the HBT radii
may contain important information on the initial condi-
tions and equation of state of the system [29]. Figure 2
shows the ! dependence of HBT radii for midcentral
(20%–30%) events for four kT bins. Because of the addi-
tional division of pairs in kT , only four bins in ! are used.
The 0th-order FC increases with decreasing kT , which
was observed for azimuthally integrated HBTanalyses at
""""""""

sNN
p $ 130 GeV [3] and attributed to pion emission
from an expanding source. Strong out-of-plane oscilla-
tions are observed for all transverse radii in each kT bin.

The full results are summarized in Fig. 3, which shows
the centrality dependence of the Fourier coefficients for
three ranges of kT . The number of participants for each
centrality was determined using a simple nuclear overlap
model [19]. Systematic variations of the HBT radii arise
due to their sensitivity to the antimerging cut threshold
and uncertainty associated with the Coulomb procedure
[3]. The total variation is largest for R2

o;0 ((10%). The
systematic variation on the relative amplitudes plotted in
the right panels of Fig. 3 are negligible compared to
statistical errors. Also, all correlation functions compos-
ing Fig. 3 are corrected for momentum resolution follow-
ing our prescription in Ref. [3].
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FIG. 1 (color online). Squared HBT radii using Eq. (1) rela-
tive to the reaction plane angle for three centrality classes. The
solid lines show allowed [24] fits to the individual oscillations.
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FIG. 2 (color online). Squared HBT radii relative to the
reaction plane angle for four kT (GeV=c) bins, 20%–30%
centrality events. The solid lines show allowed [24] fits to the
individual oscillations.
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in-plane	

n  εfinal ≈ εinital/2 
n  Strong expansion to in-plane, 

but still elliptical shape. 	

central	

peripheral	

0.15<kT<0.6 GeV/c	
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Higher Harmonic Flow and Event Plane	

n  Initial density fluctuations cause higher harmonic flow vn 

n  Azimuthal distribution of emitted particles:	

Ψ2	

Ψ3	

Ψ4	

vn   : strength of higher harmonic flow 
Ψn   : higher harmonic event plane 
φ    : azimuthal angle of emitted particles	

vn = hcosn(�� n)i

6	

smooth picture	

fluctuating picture	

Reaction Plane	



PHENIX	  PRL.107.252301	

Centrality dependence of vn and initial εn	

n  Weak centrality dependence of v3 unlike v2 

n  Initial ε3 has finite values and weaker centrality 
dependence than ε2	

"   Triangular component in source shape exists at final state? 
     ➡Measurement of HBT radii relative to Ψ3 	 7	

v3   
(pT=1.1GeV/c)	

COLLISION-GEOMETRY FLUCTUATIONS AND . . . PHYSICAL REVIEW C 81, 054905 (2010)
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FIG. 2. Distribution of (a) eccentricity, ε2, and (b) triangularity, ε3, as a function of number of participating nucleons, Npart, in
√

sNN =
200 GeV Au + Au collisions.

consistent with the expected fluctuations in the initial state
geometry with the new definition of eccentricity [46]. In this
article, we use this method of quantifying the initial anisotropy
exclusively.

Mathematically, the participant eccentricity is given as

ε2 =

√(
σ 2

y − σ 2
x

)2 + 4(σxy)2

σ 2
y + σ 2

x

, (3)

where σ 2
x , σ 2

y , and σxy , are the event-by-event (co-)variances
of the participant nucleon distributions along the transverse
directions x and y [8]. If the coordinate system is shifted to the
center of mass of the participating nucleons such that 〈x〉 =
〈y〉 = 0, it can be shown that the definition of eccentricity is
equivalent to

ε2 =
√

〈r2 cos(2φpart)〉2 + 〈r2 sin(2φpart)〉2

〈r2〉
(4)

in this shifted frame, where r and φpart are the polar coordinate
positions of participating nucleons. The minor axis of the
ellipse defined by this region is given as

ψ2 =
atan2(〈r2 sin(2φpart)〉, 〈r2 cos(2φpart)〉) + π

2
. (5)

Since the pressure gradients are largest along ψ2, the collective
flow is expected to be the strongest in this direction. The
definition of v2 has conceptually changed to refer to the second
Fourier coefficient of particle distribution with respect to ψ2
rather than the reaction plane

v2 = 〈cos(2(φ − ψ2))〉. (6)

This change has not affected the experimental definition since
the directions of the reaction plane angle or ψ2 are not a priori
known.

Drawing an analogy to eccentricity and elliptic flow, the
initial and final triangular anisotropies can be quantified as par-
ticipant triangularity, ε3, and triangular flow, v3, respectively:

ε3 ≡
√

〈r2 cos(3φpart)〉2 + 〈r2 sin(3φpart)〉2

〈r2〉
(7)

v3 ≡ 〈cos(3(φ − ψ3))〉, (8)

where ψ3 is the minor axis of participant triangularity given by

ψ3 =
atan2(〈r2 sin(3φpart)〉, 〈r2 cos(3φpart)〉) + π

3
. (9)

It is important to note that the minor axis of triangularity
is found to be uncorrelated with the reaction plane angle
and the minor axis of eccentricity in Glauber Monte Carlo
calculations. This implies that the average triangularity
calculated with respect to the reaction plane angle or ψ2 is
zero. The participant triangularity defined in Eq. (7), however,
is calculated with respect to ψ3 and is always finite.

The distributions of eccentricity and triangularity calculated
with the PHOBOS Glauber Monte Carlo implementation [47]
for Au + Au events at √

sNN = 200 GeV are shown in Fig. 2.
The value of triangularity is observed to fluctuate event by
event and have an average magnitude of the same order as
eccentricity. Transverse distribution of nucleons for a sample
Monte Carlo event with a high value of triangularity is shown
in Fig. 3. A clear triangular anisotropy can be seen in the region
defined by the participating nucleons.
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FIG. 3. Distribution of nucleons on the transverse plane for a√
sNN = 200 GeV Au + Au collision event with ε3 = 0.53 from

Glauber Monte Carlo. The nucleons in the two nuclei are shown in
gray and black. Wounded nucleons (participants) are indicated as
solid circles, while spectators are dotted circles.
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PHENIX Experiment	
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Event Plane Determination	

n  Determined by anisotropic flow itself 

n  Event plane is determined by 
Reaction Plane Detector (RXNP) 
² Resolution: <cos(n(Ψn-Ψreal))> 

n=2 :  ~ 0.75  
n=3 :  ~ 0.34 

φi	
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Particle IDentification	
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K-         K+	

π-         π+	

p: momentum  L: flight path length 
t: time of flight	

n  EMC-PbSc is used. 
²  timing resolution ~ 600 ps 

n  Time-Of-Flight method 

n  Charged π within 2σ 

² π/K separation up to ~1 GeV/c 
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EMC here!	



3D-Analysis	

n  “Out-Side-Long” frame 
²  Bertsch-Pratt parameterization 
²  Longitudinal Center of Mass System (pz1=pz2) 

n  Core-Halo model 
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N: normalization factor 
Fcoul: Coulomb correction factor	



Correction of Event Plane Resolution	

Event Plane	

Reaction Plane	

Reaction Plane	
true size	

measured size	
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event plane resolution	

n  Smearing effect by finite resolution of the event plane 

 

n  Correction for q-distribution 
² PRC.66, 044903(2002) 

ü model-independent correction 
² Checked by MC-simulation 



HBT radii w.r.t 3rd-order event plane	

n  Ro clearly shows a finite oscillation w.r.t Ψ3 in most central event,  
while Rs does not show such a oscillation. 

n  What makes this Ro oscillation? 
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Average of radii is set to “10” or “5”　for w.r.t Ψ2 and w.r.t Ψ3	
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T. Niida (QM2013)	

0.2<kT<2.0 GeV/c	

□ Δτ depends on azimuthal angle? 
    Note: Ro is sensitive to Δτ & βT"
 
 
 
□ effect of flow anisotropy?  
□ difference of “width” and “thickness”? 
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Possible explanation	

n  HBT radii w.r.t Ψ3 with Gaussian model 
² C. Plumberg et al., PRC88, 044914 (2013) 
² Next talk: C. Plumberg 

n  with/without triangularly deformed  
flow/geometry	
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flow	

deformed flow	 deformed geometry	

geometry	

PRC88, 044914 (2013)	

n  “Deformed flow” shows finite Ro oscillation and very small Rs oscillation 
n  Qualitatively agreement with the data seen in most-central collisions 
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FIG. 1: (Color online) The difference Ψ3−ψ̄3 between the
triangular flow angle Ψ3 of the emitted particles and the di-
rection ψ̄3 of the triangular hydrodynamic flow anisotropy,
as a function of the geometric triangularity ε̄3, for several
values of the magnitude of the triangular deformation of the
flow velocity, v̄3. The critical value of ε̄3 where Ψ3−ψ̄3 flips
by π/3 is positively correlated with v̄3 but insensitive to the
strength ηf of the radial flow. Due to the symmetry of our
toy model source function (36), 〈〈sin

(

3(Φ−ψ̄3)
)

〉〉=0 always
(see Eq. (15)), and the sign of 〈〈cos

(

3(Φ−ψ̄3)
)

〉〉 distinguishes
between flow angles Φ3 = ψ̄3 and Φ3 = ψ̄3 ± π

3
.

triangular anisotropies in the hydrodynamic flow.

B. HBT oscillations from the toy model

The toy model study presented in this paper was mo-
tivated by recent experimental data from the PHENIX
Collaboration, shown by T. Niida at the Quark Matter
2012 conference [13] and reproduced in Fig. 2. The data
show clear triangular oscillations as a function of the pair

FIG. 2: (Color online) Second and third order oscillations of
R2

s and R2
o measured by the PHENIX Collaboration in cen-

tral (0−10%) 200AGeV Au+Au collisions [13]. For better
visibility, the average values R2

s,0, R
2
o,0 of the two radius pa-

rameters were set by hand to 5 and 10 fm2, respectively, when
plotting the third- and second-order oscillations.

emission angle Φ, with Rs being maximal and Ro min-
imal in triangular flow direction Ψ3. For the selected
almost central Au+Au collisions (0−10% centrality), the
oscillation amplitude for R2

o is much larger than for R2
s.

As already discussed at the end of Sec. II, the observed
small triangular oscillation amplitude R2

s,3 of R2
s cannot

[14] be directly interpreted as evidence for a small geo-
metric triangularity of the source at freeze-out. What,
then, is the correct interpretation of the experimental
observations?

Thick blue: deformed flow field

Thin red: deformed geometry
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FIG. 3: (Color online) Triangular oscillations of R2
s (dashed)

and R2
o (solid) for pion pairs with momentum K⊥ =0.5GeV,

as a function of emission angle Φ relative to the triangular
flow direction Ψ3. Shown are results for two model scenar-
ios: A deformed flow field (v̄3 =0.25) in a spatially isotropic
(ε̄3 =0) density distribution (thick blue lines), and a source
with triangular geometric deformation (ε̄3 =0.25) expanding
with radially symmetric (v̄3 =0) flow (thin red lines). For the
two scenarios the oscillations of both R2

s and R2
oare seen to

be out of phase by π/3.

In Fig. 3 we show triangular oscillations relative to
the triangular flow plane of R2

s and R2
o for pion pairs

with K⊥ =0.5GeV from our toy model, for two opposite
model assumptions: Thin red lines (solid for R2

o, dashed
for R2

s) correspond to a triangular source with spatial
deformation ε̄3 =0.25 expanding radially symmetrically
(v̄3 =0); in this case the triangular flow of the emitted
hadrons is entirely due to the triangular geometric de-
formation which couples to the radial flow profile. Thick
blue lines show the HBT radii from an azimuthally sym-
metric (ε̄3 =0) source density profile, superimposed by
transverse flow with triangular anisotropy v̄3 =0.25. We
make several observations: (i) Due to the symmetry of

the emission function, the coefficients R2(s)
s,3 and R2(s)

o,3 of
the sine terms in Eq. (19) vanish; we therefore drop from
hereon the superscript (c) on the (non-vanishing) cosine

amplitudes R2(c)
s,3 and R2(c)

o,3 . (ii) For both sources, the os-
cillation amplitudes are larger in the outward than in the
sideward direction. (iii) In both cases, the outward and
sideward HBT radii oscillate out of phase by π/3. (i)–
(iii) are in qualitative agreement with the experimental

deformed flow 
deformed geometry	



kT dependence of HBT radii w.r.t Ψ3	

n  Charged pions in Au+Au 200 GeV 
² 20-60% centrality 
² 5 kT bins within 0.2-1.5 GeV/c 

n  Fitted with the following Eq.: 

n  No clear kT dependence for Rs 

n  Same sign of the Ro oscillation in all 
kT bins 
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mT dependence of 3rd-order oscillation amplitudes	

n  Rs,3
2 are around zero, and does not show any clear mT dependence. 

n  Ro,3
2 has finite negative values in both centrality 

² In 20-60%, it seems to decrease with mT. 
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Comparison with the 3rd-order Gaussian model	

n  Trend of Ro,3
2 seems to be explained by “deformed flow” in both centralities. 

² Note that model curves are scaled by 0.3 for the comparison with the data 
n  Rs,3

2 seems to show a slight opposite trend to “deformed flow”. 

² Zero~negative value at low mT, and goes up to positive value at higher mT 

n  Contribution from spatial anisotropy seems to be small. 
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Time evolution of spatial anisotropy	

n  MC-KLN + Hydrodynamic model 
² Parameters are not tuned. 

n  15-20% centrality	
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"   Inflection points represent that the nth-order deformation of the 
source turns over. 

"   Interesting that ε3 turns over earlier than ε2. 



Summary	

n  Azimuthal angle dependence of HBT radii with respect to 3rd-
order event plane have been presented. 
² Finite oscillation of Ro

2 and very weak oscillation of Rs
2 seen in 

most central event may be explained by the triangular flow 
anisotropy rather than spatial anisotropy. 

² Ro,3
2 shows a monotonic decrease with mT. 
ü Similar trend to “deformed flow” model 

² Rs,3
2 does not show any clear mT dependence, but seems to have 

opposite trend to “deformed flow” model. 
n  The result indicate that initial triangularity may be significantly 

diluted.  
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Thank you for your attention!	
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