Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX

Takafumi Niida for the PHENIX Collaboration University of Tsukuba

WPCF2013 @Acireale, Italy

Space-Time evolution in HI collisions

arXiv:1201.4264 [nucl-ex]

Space-time extent at freeze-out reflects the characteristics of system evolution, such as the strength of the expansion, the expansion time, hadron rescattering, and so on.

HBT interferometry is a powerful tool to study the space-time evolution in <u>Heavy</u> lon collisions.

HBT Interferometry

- 1956s, R. Hanbury Brown and R. Twiss measured the angular diameter of Sirius.
- 1960, Goldhaber et al. correlation among identical pions in p+p

Quantum interference between two identical particles

wave function for
2 bosons(fermions):
$$\Psi_{12} = \frac{1}{\sqrt{2}} [\Psi(x_1, p_1)\Psi(x_2, p_2) \pm \Psi(x_2, p_1)\Psi(x_1, p_2)]$$

 $C_2 = \frac{P(p_1, p_2)}{P(p_1)P(p_2)} \approx 1 + |\tilde{\rho}(q)|^2 = 1 + \exp(-R^2q^2)$

Azimuthal angle dependence

- Angle dependence of HBT radii relative to Reaction Plane reflects the source shape at kinetic freeze-out.
- Initial spatial anisotropy causes momentum anisotropy (flow anisotropy)
 - ♦One may expect in-plane extended source at freeze-out
- Final source eccentricity will depend on initial eccentricity, flow profile, expansion time, and viscosity etc.

HBT radii w.r.t Reaction Plane at RHIC

Higher Harmonic Flow and Event Plane

Initial density fluctuations cause higher harmonic flow v_n **Azimuthal distribution of emitted particles:**

$$\begin{aligned} -\frac{1}{2} & \propto 1 + 2v_2 \cos 2(\phi - \Psi_2) \\ & + 2v_3 \cos 3(\phi - \Psi_3) \\ & + 2v_4 \cos 4(\phi - \Psi_4) \\ & - \sqrt{\cos n} (\phi - \Psi_4) \end{aligned}$$

$$v_n = \langle \cos n(\phi - \Psi_n) \rangle$$

- v_n : strength of higher harmonic flow
- Ψ_n : higher harmonic event plane
 - : azimuthal angle of emitted particles

Centrality dependence of v_n and initial ϵ_n

- Weak centrality dependence of v₃ unlike v₂
- Initial ε₃ has finite values and weaker centrality dependence than ε₂
- Triangular component in source shape exists at final state?
 Measurement of HBT radii relative to Ψ₃

PHENIX Experiment

Event Plane Determination

Particle IDentification

Mass square

EMC-PbSc is used.

timing resolution ~ 600 psTime-Of-Flight method

$$m^2 = p^2 \left(\left(\frac{ct}{L}\right)^2 - 1 \right)$$

p: momentum L: flight path length t: time of flight

Charged π within 2σ

 $\Rightarrow \pi/K$ separation up to ~1 GeV/c

Momentum × charge

3D-Analysis

"Out-Side-Long" frame

- ♦ Bertsch-Pratt parameterization
- <u>L</u>ongitudinal <u>C</u>enter of <u>M</u>ass <u>System</u> ($p_{z1}=p_{z2}$)
 - $C_2 = 1 + \lambda G$ λ : chaoticity R_{μ} : HBT radii $G = \exp(-\mathbf{R}^2 \mathbf{q}^2)$

beam

$$= \exp(-R_x^2 q_x^2 - R_y^2 q_y^2 - R_z^2 q_z^2 - \Delta \tau^2 q_0^2)$$

$$= \exp(-R_s^2 q_s^2 - R_o^{*2} q_o^2 - R_l^2 q_l^2 - \Delta \tau^2 q_0^2)$$

$$\stackrel{\text{LCMS}}{\approx} \exp(-R_s^2 q_s^2 - (\underline{R_o^{*2} + \beta_T^2 \Delta \tau^2}) q_o^2 - R_l^2 q_l^2)$$

$$= \mathbf{R_o^2}$$

including cross term

$$G = \exp(-R_s^2 q_s^2 - R_o^2 q_o^2 - R_l^2 q_l^2 - 2R_{os}^2 q_s q_o)$$

Core-Halo model

$$C_2 = C_2^{core} + C_2^{halo}$$
$$= N[\lambda(1+G)F_{coul}] + [1-\lambda]$$

N: normalization factor F_{coul}: Coulomb correction factor

Correction of Event Plane Resolution

Smearing effect by finite resolution of the event plane

Correction for q-distribution $A_{crr}(q, \Phi_j) = A_{uncrr}(q, \Phi_j)$

HBT radii w.r.t 3rd-order event plane

R_o clearly shows a finite oscillation w.r.t Ψ_3 in most central event, while R_s does not show such a oscillation.

What makes this R_o oscillation Δτ depends on azimuthal angle?

Note: R_o is sensitive to $\Delta \tau \& \beta_T$ $C_2 = 1 + \lambda \exp(-R_s^2 q_s^2 - R_o^2 q_o^2 - R_l^2 q_l^2 - 2R_{os}^2 q_o q_s)$ $R_o^2 = R_o^{*2} + \beta_T^2 \Delta \tau^2$

effect of flow anisotropy?
 difference of "width" and "thickness"?

Possible explanation

- "Deformed flow" shows finite R_o oscillation and very small R_s oscillation
- Qualitatively agreement with the data seen in most-central collisions

k_T dependence of HBT radii w.r.t Ψ_3

Charged pions in Au+Au 200 GeV

- ♦ 20-60% centrality
- \diamond 5 k_T bins within 0.2-1.5 GeV/c
- Fitted with the following Eq.:

$$\begin{aligned} R_{\mu}^2 &= R_{\mu,0}^2 + 2R_{\mu,3}^2 \cos[3(\phi - \Psi_3)] \\ R_{os}^2 &= 2R_{os,3}^2 \sin[3(\phi - \Psi_3)] \\ \mu &= s, o, l \end{aligned}$$

- No clear k_T dependence for R_s
- Same sign of the R_o oscillation in all k_T bins

m_T dependence of 3rd-order oscillation amplitudes

- **R**_{s,3}² are around zero, and does not show any clear m_T dependence.
- R_{0,3}² has finite negative values in both centrality

 \Rightarrow In 20-60%, it seems to decrease with m_T.

Comparison with the 3rd-order Gaussian model

Trend of R_{0.3}² seems to be explained by "deformed flow" in both centralities.

♦Note that model curves are scaled by 0.3 for the comparison with the data

R_{s,3}² seems to show a slight opposite trend to "deformed flow".

 \Rightarrow Zero~negative value at low m_T, and goes up to positive value at higher m_T

Contribution from spatial anisotropy seems to be small.

Time evolution of spatial anisotropy

MC-KLN + Hydrodynamic model

 \diamond Parameters are not tuned.

15-20% centrality

- Inflection points represent that the nth-order deformation of the source turns over.
- Interesting that ε_3 turns over earlier than ε_2 .

Summary

Azimuthal angle dependence of HBT radii with respect to 3rdorder event plane have been presented.

- Finite oscillation of R_o² and very weak oscillation of R_s² seen in most central event may be explained by the triangular flow anisotropy rather than spatial anisotropy.
- $Aightarrow R_{0,3}^2$ shows a monotonic decrease with m_T.
 - ✓ Similar trend to "deformed flow" model
- $R_{s,3}^2$ does not show any clear m_T dependence, but seems to have opposite trend to "deformed flow" model.

The result indicate that initial triangularity may be significantly diluted.

Thank you for your attention!