Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au＋Au collisions at PHENIX

Takafumi Niida for the PHENIX Collaboration University of Tsukuba

WPCF2013＠Acireale，Italy

Space-Time evolution in HI collisions

arXiv:1201.4264 [nucl-ex]

■ Space-time extent at freeze-out reflects the characteristics of system evolution, such as the strength of the expansion, the expansion time, hadron rescattering, and so on.
■ HBT interferometry is a powerful tool to study the space-time evolution in Heavy lon collisions.

HBT Interferometry

■ 1956s, R. Hanbury Brown and R. Twiss measured the angular diameter of Sirius.

■ 1960, Goldhaber et al. correlation among identical pions in $p+\bar{p}$
■ Quantum interference between two identical particles

$$
\begin{aligned}
& \text { wave function for } \\
& \text { bosons(fermions): } \Psi_{12}=\frac{1}{\sqrt{2}}\left[\Psi\left(x_{1}, p_{1}\right) \Psi\left(x_{2}, p_{2}\right) \pm \Psi\left(x_{2}, p_{1}\right) \Psi\left(x_{1}, p_{2}\right)\right] \\
& \qquad C_{2}=\frac{P\left(p_{1}, p_{2}\right)}{P\left(p_{1}\right) P\left(p_{2}\right)} \approx 1+|\tilde{\rho}(q)|^{2}=1+\exp \left(-R^{2} q^{2}\right)
\end{aligned}
$$

Azimuthal angle dependence

- Angle dependence of HBT radii relative to Reaction Plane reflects the source shape at kinetic freeze-out.

■ Initial spatial anisotropy causes momentum anisotropy (flow anisotropy) \diamond One may expect in-plane extended source at freeze-out

- Final source eccentricity will depend on initial eccentricity, flow profile, expansion time, and viscosity etc.

beam

HBT radii w.r.t Reaction Plane at RHIC

PRC70, 044907 (2004)

- $\varepsilon_{\text {final }} \approx \varepsilon_{\text {inital }} / 2$
- Strong expansion to in-plane, but still elliptical shape.

Higher Harmonic Flow and Event Plane

■ Initial density fluctuations cause higher harmonic flow $\mathbf{v}_{\mathbf{n}}$
■ Azimuthal distribution of emitted particles:
smooth picture

fluctuating picture

$$
\begin{aligned}
\frac{d N}{d \phi} \propto 1 & +2 v_{2} \cos 2\left(\phi-\Psi_{2}\right) \\
& +2 v_{3} \cos 3\left(\phi-\Psi_{3}\right) \\
& +2 v_{4} \cos 4\left(\phi-\Psi_{4}\right)
\end{aligned}
$$

$$
v_{n}=\left\langle\cos n\left(\phi-\Psi_{n}\right)\right\rangle
$$

v_{n} : strength of higher harmonic flow
Ψ_{n} : higher harmonic event plane
φ : azimuthal angle of emitted particles

Centrality dependence of v_{n} and initial ε_{n}

Higher harmonic flow \mathbf{v}_{n}
PHENIX PRL.107.252301

Initial source anisotropy ε_{n}

- Weak centrality dependence of $\mathbf{v}_{3} u n l i k e \mathbf{v}_{\mathbf{2}}$
- Initial ε_{3} has finite values and weaker centrality dependence than ε_{2}
© Triangular component in source shape exists at final state? \Rightarrow Measurement of HBT radii relative to Ψ_{3}

PHENIX Experiment

Event Plane Determination

$1<|\mathrm{n}|<2.8$

24 scintillator segments

beam axis
■ Determined by anisotropic flow itself

$$
\Psi_{n}=\frac{1}{n} \tan ^{-1}\left(\frac{\Sigma w_{i} \cos \left(n \phi_{i}\right)}{\Sigma w_{i} \sin \left(n \phi_{i}\right)}\right)
$$

■ Event plane is determined by Reaction Plane Detector (RXNP)
\diamond Resolution: $<\cos \left(n\left(\Psi_{n}-\Psi_{\text {real }}\right)\right)>$
$\mathrm{n}=2: \sim 0.75$
$\mathrm{n}=3: \sim 0.34$

Particle IDentification

■ EMC-PbSc is used.
\triangleleft timing resolution $\sim 600 \mathrm{ps}$
■ Time-Of-Flight method

$$
m^{2}=p^{2}\left(\left(\frac{c t}{L}\right)^{2}-1\right)
$$

p : momentum L: flight path length t: time of flight

■ Charged $\boldsymbol{\pi}$ within 2σ
$\diamond \pi / \mathrm{K}$ separation up to $\sim 1 \mathrm{GeV} / \mathrm{c}$

Momentum \times charge

3D-Analysis

■ "Out-Side-Long" frame
« Bertsch-Pratt parameterization
\diamond Longitudinal Center of Mass $\underline{S y s t e m}\left(\mathrm{p}_{\mathrm{z} 1}=\mathrm{p}_{\mathrm{z} 2}\right)$

$$
\begin{aligned}
C_{2} & =1+\lambda G \quad \lambda: \text { chaoticity } \quad \mathrm{R}_{\mu}: \text { HBT radii } \\
G & =\exp \left(-\mathbf{R}^{2} \mathbf{q}^{2}\right) \\
& =\exp \left(-R_{x}^{2} q_{x}^{2}-R_{y}^{2} q_{y}^{2}-R_{z}^{2} q_{z}^{2}-\Delta \tau^{2} q_{0}^{2}\right) \\
& =\exp \left(-R_{s}^{2} q_{s}^{2}-R_{o}^{* 2} q_{o}^{2}-R_{l}^{2} q_{l}^{2}-\Delta \tau^{2} q_{0}^{2}\right) \\
& \stackrel{\text { LCMS }}{\approx} \exp \left(-R_{s}^{2} q_{s}^{2}-\frac{\left(R_{o}^{* 2}+\beta_{T}^{2} \Delta \tau^{2}\right)}{\mathbf{=} \mathbf{R}_{\mathbf{o}}{ }^{2}} q_{o}^{2}-R_{l}^{2} q_{l}^{2}\right)
\end{aligned}
$$

including cross term

$$
G=\exp \left(-R_{s}^{2} q_{s}^{2}-R_{o}^{2} q_{o}^{2}-R_{l}^{2} q_{l}^{2}-2 R_{o s}^{2} q_{s} q_{o}\right)
$$

■ Core-Halo model

$$
\begin{aligned}
C_{2} & =C_{2}^{\text {core }}+C_{2}^{\text {halo }} \\
& =N\left[\lambda(1+G) F_{\text {coul }}\right]+[1-\lambda]
\end{aligned}
$$

N : normalization factor
$\mathrm{F}_{\text {coul }}$: Coulomb correction factor

Correction of Event Plane Resolution

■ Smearing effect by finite resolution of the event plane

- Correction for q-distribution $A_{\text {crr }}\left(q, \Phi_{j}\right)=A_{\text {uncrr }}\left(q, \Phi_{j}\right)$
$\diamond P R C .66,044903(2002)$

$$
+2 \Sigma \zeta_{n, m}\left[A_{c} \cos \left(n \Phi_{j}\right)+A_{s} \sin \left(n \Phi_{j}\right)\right]
$$

\checkmark model-independent correction
\diamond Checked by MC-simulation

$$
\zeta_{n, m}=\frac{n \Delta / 2}{\sin (n \Delta / 2)\left\langle\cos \left(n\left(\Psi_{m}-\Psi_{\text {real }}\right)\right)\right\rangle}
$$

v w.r.t RP

V Uncorrected w.r.t EP

- Corrected w.r.t EP

HBT radii w.r.t $3^{\text {rd }}$-order event plane

- R_{o} clearly shows a finite oscillation w.r.t Ψ_{3} in most central event, while \mathbf{R}_{s} does not show such a oscillation.
- What makes this \mathbf{R}_{o} oscillatioı $\square \Delta \tau$ depends on azimuthal angle?

Note: R_{o} is sensitive to $\Delta \mathrm{T} \& \beta_{\mathrm{T}}$

$$
C_{2}=1+\lambda \exp \left(-R_{s}^{2} q_{s}^{2}-R_{o}^{2} q_{o}^{2}-R_{l}^{2} q_{l}^{2}-2 R_{o s}^{2} q_{o} q_{s}\right)
$$

$$
R_{o}^{2}=R_{o}^{* 2}+\beta_{T}^{2} \Delta \tau^{2}
$$

\square effect of flow anisotropy?

- difference of "width" and "thickness"?

Possible explanation

■ "Deformed flow" shows finite R_{o} oscillation and very small R_{s} oscillation
■ Qualitatively agreement with the data seen in most-central collisions

$\mathbf{k}_{\mathbf{T}}$ dependence of HBT radii w.r.t $\boldsymbol{\Psi}_{\mathbf{3}}$

- Charged pions in Au+Au 200 GeV
$\checkmark 20-60 \%$ centrality
$\triangleleft 5 \mathrm{k}_{\mathrm{T}}$ bins within $0.2-1.5 \mathrm{GeV} / \mathrm{c}$
- Fitted with the following Eq.:

$$
\begin{gathered}
R_{\mu}^{2}=R_{\mu, 0}^{2}+2 R_{\mu, 3}^{2} \cos \left[3\left(\phi-\Psi_{3}\right)\right] \\
R_{o s}^{2}=2 R_{o s, 3}^{2} \sin \left[3\left(\phi-\Psi_{3}\right)\right] \\
\quad \mu=s, o, l
\end{gathered}
$$

- No clear k_{T} dependence for R_{s}
- Same sign of the R_{o} oscillation in all k_{T} bins

$\mathbf{m}_{\mathbf{T}}$ dependence of $\mathbf{3}^{\text {rd }}$-order oscillation amplitudes

■ $R_{s, 3}{ }^{2}$ are around zero, and does not show any clear m_{T} dependence.

- $\mathbf{R}_{\mathrm{o}, 3}{ }^{2}$ has finite negative values in both centrality
$\diamond \ln 20-60 \%$, it seems to decrease with m_{T}.

Comparison with the $3^{\text {rd-order Gaussian model }}$

- Trend of $\mathrm{R}_{\mathrm{o}, 3}{ }^{2}$ seems to be explained by "deformed flow" in both centralities. \diamond Note that model curves are scaled by 0.3 for the comparison with the data
■ $\mathbf{R}_{\mathrm{s}, 3}{ }^{2}$ seems to show a slight opposite trend to "deformed flow".
\diamond Zero~negative value at low m_{T}, and goes up to positive value at higher m_{T}
■ Contribution from spatial anisotropy seems to be small.

Time evolution of spatial anisotropy

■ MC-KLN + Hydrodynamic model
\diamond Parameters are not tuned.

■ 15-20\% centrality

C. Nonaka, Aug. 2013,
@ $2^{\text {nd }}$ workshop on initial fluctuations

- Inflection points represent that the $\mathrm{n}^{\text {th }}$-order deformation of the source turns over.
- Interesting that ε_{3} turns over earlier than ε_{2}.

Summary

■ Azimuthal angle dependence of HBT radii with respect to $3^{\text {rd }}$ order event plane have been presented.
\diamond Finite oscillation of $R_{o}{ }^{2}$ and very weak oscillation of $R_{s}{ }^{2}$ seen in most central event may be explained by the triangular flow anisotropy rather than spatial anisotropy.
$\diamond R_{0,3}{ }^{2}$ shows a monotonic decrease with m_{T}.
\checkmark Similar trend to "deformed flow" model
$\diamond R_{s, 3}{ }^{2}$ does not show any clear m_{T} dependence, but seems to have opposite trend to "deformed flow" model.

- The result indicate that initial triangularity may be significantly diluted.

Thank you for your attention!

