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Multifragment production in Xe+Sn central collisions
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Mechanism of three-fragment production

@ |s it the continuation of low energy fission or the precursor of high energy
simultaneous fragmentation ?

@ Estimation of the time scale can distinguish different mechanisms.
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Evolution of the involved time scale J

@ To estimate the time scale we must establish the sequence of splittings
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Identification of the sequence of splittings
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! Relative velocities versus fission
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' Minimization procedure

@ - =3 @ _ @ x; = (v — vj®®)? : measure the compatibility
of an event with the sequence i (x1, x2, x3)

| @ The smallest x; determines the sequence i

8/16

Diego Gruyer, GANIL & UCBN



. Probing the decay mechanism of hot ucei by Coulomb chvonometry
Now we know what happened event by event !
| ] ll= = | ]
| | llll= | |
.=llll [ |
EECETE



Probing the decay mechanism of hot nuclei by Coulomb chronometry

Now we know what happened event by event !
Sequences

@ 4
__@____ G -

v, (Z) [cm/ns]
o

@
-2 y
4 2
PR I BN BN
- -2 0 2 4 )
v, (Zs) [cm/ns] ,
I
1
QJQ—>
9/16

Diego Gruyer, GANIL & UCBN IX Workshop on Particle Correlations and Femtoscopy 05.11.2013



Probing the decay mechanism of hot nuclei by Coulomb chronometry

Now we know what happened event by event !
Sequences

v, (Z) [cm/ns]
o

@
-2 v
4 2
PR I BN BN
- -2 0 2 4 )
v, (23) [cm/ns] ,
I
1
QJQ—>
9/16

Diego Gruyer, GANIL & UCBN IX Workshop on Particle Correlations and Femtoscopy 05.11.2013



Probing the decay mechanism of hot nuclei by Coulomb chronometry

Now we know what happened event by event !
Sequences

v, (Z) [cm/ns]
o

@
-2 y
4 2
PR I BN BN
- -2 0 2 4 )
v, (23) [cm/ns] ,
I
1
QJQ—>
9/16

Diego Gruyer, GANIL & UCBN IX Workshop on Particle Correlations and Femtoscopy 05.11.2013



" =-=-= . Reconstruction of the two steps

Fragment sorting and incomplete fusion

@ Fragments sorted according to the sequence and the two steps are reconstructed

[ |
]
Lol < ZXesn) Scenario
o4
80— ”":—_
S o3
E 60 :",-—
T 0.2
aq- N
oo
20- <— 8Z(Xe+Sn)
| | | | | | | | | |
12 14 16 18 20 0 12 14 16 18 20
Epear IMEV/A. Epeam [MeV/A]



" =-=-= . Reconstruction of the two steps

Fragment sorting and incomplete fusion

@ Fragments sorted according to the sequence and the two steps are reconstructed

Lol < ZXesn) Scenario
L 0.4
zsrc =
80- N N 7
I Nog
—~ N
N 60 N
Y 02-
40k N
~ oo
20- <— 8Z(Xe+Sn
| | | | | | | | | |
12 14 16 18 20 02 14 16 18 20
Epear IMEV/A. Epeam [MeV/A]

Diego Gruyer, GANIL & UCBN

10/16



" =-=-= . Reconstruction of the two steps

Fragment sorting and incomplete fusion

@ Fragments sorted according to the sequence and the two steps are reconstructed

|
[ |
. t I, .
ol < Z0essn) 1% splitting Scenario
>‘\§@§\’ 2—04—
8ol N ai  Zsc il
| . S o3
E 60 Z> ;—‘

¢

40

L %‘*%—Zq—+_—+ 0.4+
20 <— 8Z(Xe+Sn
|

0 | | |
12 14 16 18 20 12 14 16 18 20

(8z)

Epear [MEV/A Epeam [MeV/A]

Diego Gruyer, GANIL & UCBN

10/16



HCH :
RN EEEEE Reconstruction of the two steps
H EEE E . . L n
Fragment sorting and incomplete fusion
@ Fragments sorted according to the sequence and the two steps are reconstructed
B @ First splitting very asymmetric (6Z ~ 0.44 >> §Z(Xe+Sn))

. t I, .
ol < Z0essn) 1% splitting Scenario
>‘\§@§\’ :—04—
8ol N ai  Zsc il
| . S o3
E 60 Z, ;—‘

¢

40

L %‘*%—Zq—+_—+ 0.4+
20- <— 8Z(Xe+Sn
|

0 | | |
12 14 16 18 20 12 14 16 18 20

(8z)

Epear [MEV/A Epeam [MeV/A]

Diego Gruyer, GANIL & UCBN

10/16



Reconstruction of the two steps

Fragment sorting and incomplete fusion

@ Fragments sorted according to the sequence and the two steps are reconstructed
B @ First splitting very asymmetric (6Z ~ 0.44 >> §Z(Xe+Sn))

@ The memory of the entrance channel is lost : incomplete fusion achieved
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_C_oulomb proximity effects : angular distribution
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From hot sequential fission to multifragmentation
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@ Quasi-simultaneous above E* = 4.0 + 0.5 MeV/A : onset of multifragmentation

D. Gruyer et al. (INDRA collaboration) arXiv :1309.7779 submitted to Phys. Rev. Let.

How to go further ?

@ Need of a dynamical model which describes sequential break-up
@ Chronometer : transport properties of nuclear matter (isospin diffusion, etc.)
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