

Probing the decay mechanism of hot nuclei by Coulomb chronometry

Diego Gruyer for the INDRA Collaboration

Grand Accélérateur National d'Ions Lourds, and Université de Caen Basse-Normandie

de Caen asse-Normandie

O.Delaune, PhD Thesis (2012)

Multifragment production in Xe+Sn central collisions

A.Chbihi et al. J.Phys. : Conf.Ser. 420, 012099 (2012)

Multifragment production in Xe+Sn central collisions

A.Chbihi et al. J.Phys. : Conf.Ser. 420, 012099 (2012)

Multifragment production in Xe+Sn central collisions

A.Chbihi et al. J.Phys. : Conf.Ser. 420, 012099 (2012)

Multifragment production in Xe+Sn central collisions

A.Chbihi et al. J.Phys. : Conf.Ser. 420, 012099 (2012)

Mechanism of three-fragment production

Multifragment production in Xe+Sn central collisions

A.Chbihi et al. J.Phys. : Conf.Ser. 420, 012099 (2012)

Mechanism of three-fragment production

• Is it the continuation of low energy fission or the precursor of high energy simultaneous fragmentation?

Multifragment production in Xe+Sn central collisions

A.Chbihi et al. J.Phys. : Conf.Ser. 420, 012099 (2012)

Mechanism of three-fragment production

- Is it the continuation of low energy fission or the precursor of high energy simultaneous fragmentation ?
- Estimation of the time scale can distinguish different mechanisms.

Outline

Introduction

- Experimental details
- Qualitative evolution of the reaction mechanism
- Time scale estimation by Coulomb chronometry
- Summary and prospects

Experimental details

Experimental data

• Xe+Sn at 12, 15, 18, 20, 25 MeV/A

.

INDRA 4π multidetector

- High granularity with 336 cells
- Charge identification from proton to Uranium up to 250 MeV/A
- Low identification thresholds

Experimental data

• Xe+Sn at 12, 15, 18, 20, 25 MeV/A

Experimental details

.

INDRA 4π multidetector

- High granularity with 336 cells
- Charge identification from proton to Uranium up to 250 MeV/A
- Low identification thresholds

Experimental data

• Xe+Sn at 12, 15, 18, 20, 25 MeV/A

Experimental details

Experimental details

INDRA 4π multidetector

- High granularity with 336 cells
- Charge identification from proton to Uranium up to 250 MeV/A
- Low identification thresholds

Experimental data

- Xe+Sn at 12, 15, 18, 20, 25 MeV/A
- Most central collisions
- Three heavy fragments with Z>10 in the exit channel (Z₁>Z₂>Z₃)

Experimental details

INDRA 4π multidetector

- High granularity with 336 cells
- Charge identification from proton to Uranium up to 250 MeV/A
- Low identification thresholds

Experimental data

- Xe+Sn at 12, 15, 18, 20, 25 MeV/A
- Most central collisions
- Three heavy fragments with Z>10 in the exit channel (Z₁>Z₂>Z₃)

Qualitative characterization of the reaction mechanism

Qualitative characterization of the reaction mechanism

Qualitative characterization of the reaction mechanism

Qualitative characterization of the reaction mechanism

Qualitative characterization of the reaction mechanism

Relative velocity versus fission

Xenon beam energy

From sequential to simultaneous break-up

Lowest beam energy

- Three branches parallel to the edges of the Dalitz plot
- Few events close to the center
- Sequential break-up dominates

Xenon beam energy

From sequential to simultaneous break-up

Lowest beam energy

- Three branches parallel to the edges of the Dalitz plot
- Few events close to the center
- Sequential break-up dominates

Increasing beam energy

- Three branches still present
- Closer and closer to the center
- Evolution from successive splittings to simultaneous fragmentation

Xenon beam energy

From sequential to simultaneous break-up

Lowest beam energy

- Three branches parallel to the edges of the Dalitz plot
- Few events close to the center
- Sequential break-up dominates

Increasing beam energy

- Three branches still present
- Closer and closer to the center
- Evolution from successive splittings to simultaneous fragmentation

Xenon beam energy

Evolution of the involved time scale

To estimate the time scale we must establish the sequence of splittings

Identification of the sequence of splittings

Hypothesis

• Fragments production : 2 successive splittings

Identification of the sequence of splittings

Splitting sequences

Hypothesis

- Fragments production : 2 successive splittings
- Three possible sequences of splittings

Identification of the sequence of splittings

Splitting sequences

Hypothesis

- Fragments production : 2 successive splittings
- Three possible sequences of splittings

Relative velocities versus fission

 Relative velocity of each pair of fragments compared to fission from Viola systematics

Identification of the sequence of splittings

Splitting sequences

Hypothesis

- Fragments production : 2 successive splittings
- Three possible sequences of splittings

Relative velocities versus fission

 Relative velocity of each pair of fragments compared to fission from Viola systematics

Minimization procedure

- χ_i = (v_{jk}^{exp} v_{jk}^{viola})² : measure the compatibility
 of an event with the sequence i (χ₁, χ₂, χ₃)
- The smallest χ_i determines the sequence *i*

Fragment sorting and incomplete fusion

• Fragments sorted according to the sequence and the two steps are reconstructed

Fragment sorting and incomplete fusion

• Fragments sorted according to the sequence and the two steps are reconstructed

Fragment sorting and incomplete fusion

• Fragments sorted according to the sequence and the two steps are reconstructed

Fragment sorting and incomplete fusion

- Fragments sorted according to the sequence and the two steps are reconstructed
- First splitting very asymmetric ($\delta Z \sim 0.44 \gg \delta Z(Xe+Sn)$)

Reconstruction of the two steps

Fragment sorting and incomplete fusion

- Fragments sorted according to the sequence and the two steps are reconstructed
- First splitting very asymmetric (δZ ~ 0.44 ≫ δZ(Xe+Sn))
- The memory of the entrance channel is lost : incomplete fusion achieved

Reconstruction of the two steps

Fragment sorting and incomplete fusion

- Fragments sorted according to the sequence and the two steps are reconstructed
- First splitting very asymmetric (δZ ~ 0.44 ≫ δZ(Xe+Sn))
- The memory of the entrance channel is lost : incomplete fusion achieved

Coulomb proximity effects : angular distribution

Inter-splitting angle

 Z_2^s

Coulomb proximity effects : angular distribution

• 12-15 MeV/A : "U" shape characteristic of fission with angular momentum,

 \mathbb{Z}_2^s

Coulomb proximity effects : angular distribution

- 12-15 MeV/A : "U" shape characteristic of fission with angular momentum,
- 18-20 MeV/A : θ ~ 90° due to the coulomb field of Z^f₁

 \mathbb{Z}_2^s

Coulomb proximity effects : angular distribution

- 12-15 MeV/A : "U" shape characteristic of fission with angular momentum,
- 18-20 MeV/A : θ ~ 90° due to the coulomb field of Z^f₁
- It indicates a shortening of the inter-splitting time

- Second splitting far away from the first emitted fragment
- Relative velocity independent of the inter-splitting angle θ

$$v_{12}^{s}$$

0° θ 180°

- Trajectories are modified by the Coulomb field of the first emitted fragment
- Relative velocity depend on θ

- Second splitting far away from the first emitted fragment
- Relative velocity independent of the inter-splitting angle θ

$$v_{12}^{s}$$

0° θ 180°

- Trajectories are modified by the Coulomb field of the first emitted fragment
- Relative velocity depend on θ

- Second splitting far away from the first emitted fragment
- Relative velocity independent of the inter-splitting angle θ

$$v_{12}^{s}$$

0° θ 180°

- Trajectories are modified by the Coulomb field of the first emitted fragment
- Relative velocity depend on θ

θ

 \vec{v}_2^s

Use of the Coulomb chronometer

 $V_{12}^s = \|\vec{v}_1^s - \vec{v}_2^s\|$

- $\langle v_{12}^s \rangle$ maximum for $\theta \sim 90^\circ$
- This maximum increases when increasing beam energy

θ

 \vec{V}_2^s

Use of the Coulomb chronometer

 $V_{12}^s = \|\vec{v}_1^s - \vec{v}_2^s\|$

- $\langle v_{12}^s \rangle$ maximum for $\theta \sim 90^\circ$
- This maximum increases when increasing beam energy
- Coulomb distortion parameter : $\delta v = v_{12}^s (90^\circ) - v_{12}^s (0^\circ)$

A

 \vec{V}_2^s

Use of the Coulomb chronometer

Experimental correlations

 $v_{12}^s = \|\vec{v}_1^s - \vec{v}_2^s\|$

- $\langle v_{12}^s \rangle$ maximum for $\theta \sim 90^\circ$
- This maximum increases when increasing beam energy
- Coulomb distortion parameter : $\delta v = v_{12}^s (90^\circ) - v_{12}^s (0^\circ)$
- δv and δt can be related with Coulomb trajectory calculation

Coulomb trajectory calculations

$$v_{12}^{s} \overbrace{-1 \cos(\theta) \quad 1}^{\delta v}$$

Coulomb trajectory calculations

$$v_{12}^{s} \overbrace{-1 \cos(\theta) \quad 1}^{\delta v}$$

Coulomb trajectory calculations

$$v_{12}^{s} \overbrace{-1 \cos(\theta) \quad 1}^{\delta v}$$

Coulomb trajectory calculations

$$v_{12}^{s} \overbrace{-1 \cos(\theta) \quad 1}^{\delta v}$$

Coulomb trajectory calculations

$$v_{12}^{s} \stackrel{\frown}{\underset{-1 \quad \cos(\theta) \quad 1}{\longrightarrow}} \overline{[\delta v]}$$

Coulomb trajectory calculations

$$v_{12}^{s} \stackrel{\frown}{\underset{-1 \quad \cos(\theta) \quad 1}{\longrightarrow}} \overline{[\delta v]}$$

Coulomb trajectory calculations

$$v_{12}^{s} \xrightarrow{1} \cos(\theta) \xrightarrow{1} \cos(\theta) \xrightarrow{1}$$

From hot sequential fission to multifragmentation

From hot sequential fission to multifragmentation

Inter-splitting time evolution

- δt decreases with increasing available or excitation energy
- For δt < 100 fm/c : no more meaningful to speak of a sequential process

From hot sequential fission to multifragmentation

Inter-splitting time evolution

- δt decreases with increasing available or excitation energy
- For δt < 100 fm/c : no more meaningful to speak of a sequential process

Reaction mechanism

• Successive splittings occuring on shorter and shorter time scale

From hot sequential fission to multifragmentation

Inter-splitting time evolution

- δt decreases with increasing available or excitation energy
- For δt < 100 fm/c : no more meaningful to speak of a sequential process

Reaction mechanism

- Successive splittings occuring on shorter and shorter time scale
- Compatible with simultaneous break-up above E_b=20 MeV/A

From hot sequential fission to multifragmentation

Inter-splitting time evolution

- δt decreases with increasing available or excitation energy
- For δt < 100 fm/c : no more meaningful to speak of a sequential process

Reaction mechanism

- Successive splittings occuring on shorter and shorter time scale
- Compatible with simultaneous break-up above E_b=20 MeV/A
- Onset of multifragmentation above $E^* = 4.0 \pm 0.5 \text{ MeV/A}$

Summary and prospects

Evolution of the decay mechanism : 3-fragment exit channel

¹²⁹Xe+^{nat}Sn central collisions measured with INDRA at E_{beam}=12-25 MeV/A

Summary and prospects

Evolution of the decay mechanism : 3-fragment exit channel

- ¹²⁹Xe+^{nat}Sn central collisions measured with INDRA at E_{beam}=12-25 MeV/A
- Two binary splittings on shorter and shorter time scale

Summary and prospects

Evolution of the decay mechanism : 3-fragment exit channel

- ¹²⁹Xe+^{nat}Sn central collisions measured with INDRA at E_{beam}=12-25 MeV/A
- Two binary splittings on shorter and shorter time scale
- Quasi-simultaneous above $E^* = 4.0 \pm 0.5$ MeV/A : onset of multifragmentation

Summary and prospects

Evolution of the decay mechanism : 3-fragment exit channel

- ¹²⁹Xe+^{nat}Sn central collisions measured with INDRA at E_{beam}=12-25 MeV/A
- Two binary splittings on shorter and shorter time scale
- $\bullet~$ Quasi-simultaneous above $E^* = 4.0 \pm 0.5~MeV/A$: onset of multifragmentation

D. Gruyer et al. (INDRA collaboration) arXiv :1309.7779 submitted to Phys. Rev. Let.

Summary and prospects

Evolution of the decay mechanism : 3-fragment exit channel

- ¹²⁹Xe+^{nat}Sn central collisions measured with INDRA at E_{beam}=12-25 MeV/A
- Two binary splittings on shorter and shorter time scale
- $\bullet~$ Quasi-simultaneous above $E^* = 4.0 \pm 0.5~MeV/A$: onset of multifragmentation

D. Gruyer et al. (INDRA collaboration) arXiv :1309.7779 submitted to Phys. Rev. Let.

How to go further?

Need of a dynamical model which describes sequential break-up
Probing the decay mechanism of hot nuclei by Coulomb chronometry

Summary and prospects

Evolution of the decay mechanism : 3-fragment exit channel

- ¹²⁹Xe+^{nat}Sn central collisions measured with INDRA at E_{beam}=12-25 MeV/A
- Two binary splittings on shorter and shorter time scale
- $\bullet~$ Quasi-simultaneous above $E^* = 4.0 \pm 0.5~MeV/A$: onset of multifragmentation

D. Gruyer et al. (INDRA collaboration) arXiv :1309.7779 submitted to Phys. Rev. Let.

How to go further?

- Need of a dynamical model which describes sequential break-up
- Chronometer : transport properties of nuclear matter (isospin diffusion, etc.)

Probing the decay mechanism of hot nuclei by Coulomb chronometry

Thank you for your attention !

D.Gruyer¹, J.D.Frankland¹, **E.Bonnet**¹, **A.Chbihi**¹, G.Ademard³, M.Boisjoli^{1,4}, B.Borderie³, R.Bougault⁵, E.Galichet^{3,10}. E.Gauthier⁴, D.Guinet⁶, P.Lautesse⁶, L.Manduci⁷, N.Le Neindre⁵, E.Legouée⁵, O.Lopez⁵, P.Marini¹, K.Mazurek⁸, P.N.Nadtochy¹¹, M.Pârlog⁵, P.Pawłowski⁸, M.F.Rivet³, R.Roy⁴, E.Rosato⁹ G.Spadaccini⁹, G.Verde¹², E.Vient⁵, M.Vigilante⁹, and J.P.Wieleczko¹ (INDRA Collaboration)

¹ GANIL, Caen, France

³ IPN, Université Paris-Sud 11, Orsay, France

⁴ Université Laval, Québec, Canada

⁵ LPC, Université de Caen, Caen, France

⁶ IPN, Université Claude Bernard Lyon 1, Villeurbanne, France

⁷ École des Applications Militaires de l'Énergie Atomique, Cherbourg, France

⁸ H. Niewodniczański Institute of Nuclear Physics, Kraków, Poland

⁹ INFN, Universita di Napoli "Federico II", Napoli, Italy

¹⁰ Conservatoire National des Arts et Métiers, Paris, France

11 Omsk State University, Omsk, Russia

12 INFN, Sezione di Catania, Catania, Italy