

IX WORKSHOP ON PARTICLE CORRELATIONS AND FEMTOSCOPY Acireale (CT), Italy Nov. 5-8

Anisotropic flow of identified particles in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV measured with ALICE at the LHC

F. Noferini for the ALICE Collaboration

CENTRO STUDI E RICERCHE E MUSEO STORICO DELLA FISICA

Motivation

Fourier expansion
$$\frac{dN}{d\varphi} \propto 1 + 2v_1 \cos[\varphi - \Psi_1] + 2v_2 \cos[2(\varphi - \Psi_2)] + 2v_3 \cos[3(\varphi - \Psi_3)] + \dots$$

Anisotropic flow coefficients covered in this talk

- Anisotropic flow of identified particles is sensitive to the partonic degrees of freedom at the early times of a heavy-ion collision;
- $v_n(p_T)$ allows to quantify:
- 1. rate of hydrodynamic radial expansion (mass dependence of v_n vs. p_T)
- 2. properties of the deconfined phase (e.g. viscosity)
- 3. details of hadronization mechanism (e.g. coalescence, fragmentation at high p_T)

Outline

In this talk we present anisotropic flow of π , K, p, Λ , Ξ , Ω and investigate the properties of v_2 and v_3 vs. transverse momentum:

- 1. particle mass dependence
- 2. quark (light/strange) content
- 3. comparison with hydrodynamic model calculations
- 4. comparison with measurements at RHIC
- 5. v_2/v_3 scaling properties with number of quarks and transverse kinetic energy.
- A comparison of v_2 for p-Pb and PbPb system is also reported.

Analysis details

VZERO detector

Two forward scintillator arrays (-3.7<η<-1.7, 2.8<η<5.1): centrality + triggering + event plane

Inner Tracking System

(ITS) (-0.8<η<0.8) Tracking + triggering

Time Projection Chambers (TPC): (-0.8<η<0.8) Tracking + particle identification(PID)

DATA sample:

- Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV (2010 data, 10M events)
- p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV (2013 data, 100M events)

π , K and p/ \overline{p} identification

Particle identification with TOF & TPC:

- ^π asymmetric β -cut to select a high purity sample of π , **K** and **p**.
- $^{\prime\prime}~2\sigma$ cut in the TPC dE/dx.
- \tilde{p}_{T} range:
- $^{"}$ π → 0.3 < p_T < 3.5 GeV/c
- ″ K → 0.4 < p_T < 2.5 GeV/*c*
- " p → 0.5 < p_T < 4.0 GeV/c
- " purity: > 90%

Identification at high pT with TPC:

- " purity cut on the TPC dE/dx signal: " p_T range (in GeV/c):
- " π and p \rightarrow 3 < p_T < 16

" purity: > 90% for pions, > 80% for protons

WPCF 9th Oct 2013

Elliptic flow of identified particles

ALICE compilation for v_2

Collection of ALICE v_2 for π , K^{\pm} , p, K_s^0 , Λ :

- 1. Mass ordering observed for different species
 - Stronger in most central collisions \rightarrow stronger radial flow
- 2. Crossing between proton and pion v_2 around $p_T \sim 2 \text{ GeV}/c$
- 3. Particle type dependence persists out to high p_T

Identified particle flow vs. hydro

Hydro \rightarrow U. W. Heinz, C. Shen, and H. Song, AIP Conf. Proc. 1441, 766-770 (2012)

Hydrodynamic models predict mass splitting
Hydrodynamic curves reproduce the main features of v₂ at low p_T
better description of the mass splitting in peripheral than in central collisions
hadron rescattering could help to reconcile data and hydro prediction

Ξ and Ω flow vs. hydro

Hydrodynamic model calculations reproduce larger boost towards higher p_T for Ξ and Ω (Heinz, Shen, Song, AIP Conf. Proc. 1441, 766 (2012); PRC84 044903)

v_2 of , K, p at LHC vs. RHIC

Elliptic flow scaling properties

 p_T/n_q ($n_q=2$ for mesons, $n_q=3$ for baryons) scaling: $v_2(p_T)$ for 3 < p_T < 6 GeV/*c* can be used to test quark coalescence

v₂ scaled for the Number of Constituent Quarks (NCQ) vs p_T/n_q (ratio vs. π)

 p_T/n_q ($n_q=2$ for mesons, $n_q=3$ for baryons) scaling: $v_2(p_T)$ for $3 < p_T < 6$ GeV/c can be used to test quark coalescence v_2/n_q vs. p_T/n_q holds within 20% for intermediate p_T/n_q and is violated at low p_T/n_q

v_2 scaled for the Number of Constituent Quarks (NCQ) vs KE_T/n_q^{RLICE}

 $\frac{\text{KE}_{T}/n_{q} \text{ scaling:}}{\text{For low KE}_{T}/n_{q}} \text{: the NCQ scaling is broken at the LHC} \\ \text{For KE}_{T}/n_{q} > 1 \text{ GeV}/c \text{: scaling holds at the level of 20\%}$

WPCF 9th Oct 2013

v₂ scaled for the Number of Constituent Quarks (NCQ) vs KE_T/n_q^{ALICE} (ratio vs. π)

 $\frac{\text{KE}_{T}/n_{q} \text{ scaling:}}{\text{For low KE}_{T}/n_{q}} \text{: the NCQ scaling is broken at the LHC}$ $\frac{\text{For KE}_{T}/n_{q}}{\text{For KE}_{T}/n_{q}} > 1 \text{ GeV}/c \text{: scaling holds at the level of 20\%}$

WPCF 9th Oct 2013

Identified particle triangular flow

Triangular flow

 v_3 exhibits similar particle mass dependence as that of v_2

[~] The value of p_T at which v₃ of all species cross looks similar to that for v₂

v₃ is quite sensitive to the input in the hydro models

 v_3 {2} is without rapidity gap

18

Triangular flow (NCQ)

 v_3 scales better with the number of constituent quarks w.r.t. v_2 (is it still broken in the most central collisions?).

Triangular flow

1. up to $p_T \sim 8 \text{ GeV}/c$, proton v_2 and v_3 is larger than that of pion

- 2. pion/proton v₂ at high transverse momenta ($p_T > 10 \text{ GeV}/c$) is significant and non zero, while within experimental uncertainties v₃ is consistent with zero
- 3. Charged pion v_2 reproduced by WHDG ⁰ predictions for $p_T > 7$ GeV/c

4. Charged pion v₂ similar in magnitude to PHENIX ⁰ v₂

v₂ in p-Pb

Qualitatively similar picture in p-Pb as in Pb-Pb: "Crossing between proton and pion v_2 at $p_T \sim 2 \text{ GeV/c}$ "Observe mass ordering at low p_T

Does it flow?

Summary

Elliptic flow of $, K, p, \Lambda, \Xi, \Omega$ is measured vs. transverse momentum for different collision centrality classes for Pb-Pb collision at 2.76 TeV:

- 1. Main features of v_2 at low p_T are reproduced by hydro model calculations
- 2. Mass splitting is consistent with stronger radial flow at the LHC
- 3. NCQ scaling broken at low p_T , while it is only approximate (within 20%) at intermediate p_T
- 4. Proton v_2 and v_3 is higher than that of the pion out to at least $p_T=8$ GeV/*c* Particle type dependence persists out to high p_T
- 5. v_3 of , K, and p/ \bar{p} has a similar mass dependence and crossing point as that of v_2

Moreover intriguing results were observed in p-Pb high multiplicity collisions revealing similar feature for v_2 as in PbPb (is it flow?)