Measurements of the event shapes and underlying event in pp collisions at 7 TeV

Róbert Astaloš

(Comenius University Bratislava, Radboud University Nijmegen)

on behalf of the ATLAS Collaboration

WPCF 2013 – IX Workshop on Particle Correlations and Femtoscopy Acireale (Catania), Italy, 5-8 November 2013

November 5, 2013

Event Shape Definition Data Selection Results

Overview

Measurement of charged-particle EVENT SHAPE variables in inclusive $\sqrt{s} = 7$ TeV proton-proton interactions with the ATLAS detector

Phys. Rev. D 88, 032004 (2013) [arXiv:1207.6915]

- Event Shape Definitions
- Data Selection
- Results

2 The UNDERLYING EVENT in jet events at $\sqrt{s} = 7$ TeV with the ATLAS experiment ATLAS-CONF-2012-164

Event Shape Definitions Data Selection Results

Motivation

 Soft interactions are not reliably calculable by theory - but important for quark confinement understanding

 \Rightarrow described by phenomenological models, implemented in MC event generators

 \Rightarrow contain many free parameters which are needed to be constrained by measurements.

Event Shapes = observables that describe the patterns, correlations, and origins of the energy flow in an interaction

- experimentally simply measured quantities
- enable detailed tests of the phenomenological models of QCD in leading order MC programs ⇒ input for tuning MC generators

Event Shape Definitions Data Selection Results

Event Shapes

- indirect probe of multi-jet topologies
- $\bullet\,$ vanish in the limit of a pure 2 \rightarrow 2 process
- increase to a maximum for uniformly distributed energy within a multi-jet event
- ratios of final state observables ⇒ reduced sensitivity to theoretical and experimental uncertainties
- defined in terms of the transverse momentum, which is Lorentz-invariant under boosts along the beam axis
- *central event shapes*: include only particles from a restricted phase space in pseudorapidity η , in this analysis the range $|\eta| < 2.5$ is used

Event Shapes Event Shape Definitions
Underlying Events
Summary Results

Transverse Thrust

$$T_{\perp} = \max_{\hat{m{n}}_{\perp}} rac{\sum\limits_{i} |m{p}_{\mathrm{T}i} \cdot \hat{m{n}}_{\perp}|}{\sum\limits_{i} p_{\mathrm{T}i}} \qquad \qquad au_{\perp} = 1 - T_{\perp}$$

• the sum over the *p*_{Ti} of all charged particles in the event

- $\hat{\boldsymbol{n}}_{\perp}$ the unit vector of the *thrust axis* maximizing the ratio
- $T_{\perp} = 1$ for a perfectly balanced, pencil-like, dijet topology
- *T*_⊥ = 2/π for a circularly symmetric distribution of particles in the transverse plane

 τ_{\perp} - complement to \mathcal{T}_{\perp} - matches the behavior of many event shape variables:

- vanishes in a balanced dijet topology
- large value of au_{ot} a departure from a two-body system

Event Shapes Underlying Events Summary Transverse Thrust Minor

Event Plane = defined by the thrust axis \hat{n}_{\perp} and beam axis \hat{z}

$$\mathcal{T}_{\mathrm{M}} = rac{\sum\limits_{i} |oldsymbol{p}_{\mathrm{T}i} \cdot \hat{oldsymbol{n}}_{m}|}{\sum\limits_{i} oldsymbol{p}_{\mathrm{T}i}}, \qquad \hat{oldsymbol{n}}_{m} = \hat{oldsymbol{n}}_{\perp} imes \hat{oldsymbol{z}}$$

The **transverse thrust minor** $T_{\rm M}$ quantifies the sum of all tranverse momenta out of the event plain

- $T_{\rm M} = 0$ for a perfectly balanced, pencil-like, dijet topology
- $T_{\rm M} = 2/\pi$ for an isotropic event (circularly symmetric distribution of particles in the transverse plane)

Event Shape Definitions Data Selection Results

Transverse Sphericity

the **transverse sphericity** S_{\perp} is defined in terms of the transverse components only:

$$\mathcal{S}_{\perp}\,=\,rac{2\lambda_2^{xy}}{\lambda_1^{xy}+\lambda_2^{xy}}$$

where $\lambda_1^{xy} > \lambda_2^{xy}$ are two eigenvalues of S^{xy} :

$$S^{xy} = \sum_{i} rac{1}{|\mathbf{p}_{\tau,i}|^2} \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} \\ p_{yi}p_{xi} & p_{yi}^2 \end{pmatrix}$$

• allowed range: $0 \le S_{\perp} < 1$

Event Shape Definitions Data Selection Results

Event and Track Selection

the data collected in April 2010 with a minimal prescale factor for the minimum-bias trigger (peak luminosity $\approx~1.9\times10^{27}~cm^{-2}s^{-1})$

events rejected if they contain any other vertex with \geq 4 tracks apart from the primary interaction vertex of the event

events required to contain at least 6 tracks fulfilling the criteria:

- $p_{\rm T} > 0.5 {
 m ~GeV}; |\eta| < 2.5$
- a minimum of one pixel and 6 SCT hits;
- a hit in the innermost pixel layer, if the corresponding pixel module was active;
- transverse and longitudinal impact parameters wrt the primary vertex, $|\mathbf{d_0}| < 1.5 \text{ mm}$ and $|\mathbf{z_0}| \sin \theta < 1.5 \text{ mm}$;
- a track-fit probability χ² > 0.01 for tracks with p_T > 10 GeV in order to remove mis-measured tracks.

Event Shape Definitions Data Selection Results

Measured Distributions

I. Normalized distributions:

 $(1/N_{ev})dN_{ev}/d au_{\perp}^{ch}$ $(1/N_{ev})dN_{ev}/dT_{\mathrm{M}}^{ch}$ $(1/N_{ev})dN_{ev}/dS_{\perp}^{ch}$

 $^{\it ch}$ in the event shape observables $\tau_{\perp}^{\rm ch},~{\it T}_{\rm M}^{\rm ch},~{\it S}_{\perp}^{\rm ch}$ indicating charged particles

studied separately for the following p_T^{lead} regions:

- $\label{eq:GeV} \bullet \ 0.5 \ GeV < p_T^{lead} < 2.5 \ GeV; \qquad 2.5 \ GeV < p_T^{lead} < 5.0 \ GeV;$
- $\bullet \ \ 5.0 \ GeV < p_T^{lead} < 7.5 \ GeV; \qquad \ \ 7.5 \ GeV < p_T^{lead} < 10.0 \ GeV;$
- *p*^{lead}_T > 10.0 GeV

 $p_{\mathrm{T}}^{\mathrm{lead}}$ - transverse momentum of the highest p_{T} (leading) charged particle

- II. Average values: $\langle \tau_{\perp}^{ch} \rangle, \langle T_{M}^{ch} \rangle, \langle S_{\perp}^{ch} \rangle$ as functions of $N_{ch}, \sum p_{T}$
 - N_{ev} number of events with six or more charged particles within the selected kinematic range
 - N_{ch} number of charged particles in an event
 - $\sum p_{\rm T}$ scalar sum of transverse momenta of charged particles in the event

Event Shape Definitions Data Selection Results

Atlas Detector

the ATLAS detector - almost full solid angle around the collision point coverage

tracking detectors - azimuthal angle ϕ : full coverage, pseudorapidity coverage: $\eta < 2.5$

- pixel detector (pixel); semiconductor tracker (SCT)
- for $|\eta| < 2.0$ transition radiation tracker (TRT)

Minimum Bias Trigger Scintillator (MBTS) - mounted at each end of the tracking detector at $z = \pm 3.56$ m segmented into 8 sectors in azimuth and two concentric rings in pseudorapidity 2.09 < $|\eta| < 2.82$ and 2.82 < $|\eta| < 3.84$

all models tend to better reproduce data selected with higher p_T^{lead} ranges PYTHIA 6 tune Z1 tuned to UE at LHC agrees best; PYTHIA 6 DW is furthest from data AMBT2B based on MB LHC data shows better agreement in the lowest p_T^{lead} ranges compared to AMBT2B, PYTHIA 8 and HERWIG++ agree better in intermediate p_T^{lead} 11

all models tend to better reproduce data selected with higher p_T^{lead} ranges PYTHIA 6 tune Z1 tuned to UE at LHC agrees best; PYTHIA 6 DW is furthest from data AMBT2B based on MB LHC data shows better agreement in the lowest p_{T}^{lead} ranges compared to AMBT2B, **PYTHIA 8** and **HERWIG++** agree better in **intermediate** p_{T}^{read} 12

& distribution broadening

Event Shape Definitions Data Selection Results

Transverse Sphericity Distributions

lower p_T^{lead} ranges: spherical events prevalence more sensitive to p_T^{lead} incr.! starting with $p_T^{\text{lead}} > 5 \text{ GeV}$: shift to less spherical events & distribution broadening

all models tend to better reproduce data selected with higher ρ_T^{lead} ranges PYTHIA 6 tune Z1 tuned to UE at LHC agrees best; PYTHIA 6 DW similar to other tunes AMBT2B based on MB LHC data agrees better for the lowest ρ_T^{lead} ranges PYTHIA 8 A2 and HERWIG++ UE7-2 agree better in the intermediate ρ_T^{lead} ranges 13

p_{T}^{lead} range	$ au_{\perp}^{ m ch}$	${\cal T}_{ m M}^{ m ch}$	$m{\mathcal{S}}^{ ext{ch}}_{ot}$
$0.5 \text{ GeV} < p_T^{\text{lead}} \le 2.5 \text{ GeV}$	$\textbf{0.227} \pm \textbf{0.002}$	0.508 ± 0.002	$\textbf{0.618} \pm \textbf{0.005}$
$2.5 \text{ GeV} < p_T^{\text{lead}} \le 5.0 \text{ GeV}$	$\textbf{0.240} \pm \textbf{0.006}$	$\textbf{0.514} \pm \textbf{0.005}$	$\textbf{0.579} \pm \textbf{0.013}$
$5.0 \text{ GeV} < p_T^{\text{lead}} \le 7.5 \text{ GeV}$	0.227 ± 0.007	$\textbf{0.490} \pm \textbf{0.006}$	$\textbf{0.449} \pm \textbf{0.019}$
$7.5 \text{ GeV} < p_T^{\text{lead}} \le 10 \text{ GeV}$	$\textbf{0.210} \pm \textbf{0.010}$	$\textbf{0.459} \pm \textbf{0.007}$	0.337 ± 0.017
$\rho_{\rm T}^{\rm lead} \leq 10 \; { m GeV}$	$\textbf{0.185} \pm \textbf{0.011}$	$\textbf{0.415} \pm \textbf{0.010}$	$\textbf{0.230} \pm \textbf{0.024}$

- mean values of τ_{\perp}^{ch} and T_{M}^{ch} initially rise with increasing p_{T}^{lead} with their maximum value in the range 2.5 GeV < $p_{T}^{lead} \leq 5.0$ GeV, before decreasing
- similar trend observed by the ALICE Collaboration, transverse sphericity distribution, charged particles with $|\eta| < 0.8$ in inelastic 7 TeV *pp* collisions

all observables increase with N_{ch} ; increase is less marked at values of $N_{ch} > 30$ similar trend for $\sum p_{T}$; for $\sum p_{T} > 100 \text{ GeV}$ decrease again \Rightarrow events are more dijet-like MC models predict fewer high-sphericity events than seen in the data (similar by ALICE) N_{ch} behavior predicted by MC well; decrease in $\sum p_{T}$ happens before the data 15

Underlying Events Definition Data Selection Results

Overview

Measurement of charged-particle EVENT SHAPE variables in inclusive $\sqrt{s} = 7$ TeV proton-proton interactions with the ATLAS detector Phys. Rev. D 88, 032004 (2013) [arXiv:1207.6915]

- The UNDERLYING EVENT in jet events at $\sqrt{s} = 7$ TeV with the ATLAS experiment ATLAS-CONF-2012-164
 - Underlying Events Definition
 - Data Selection
 - Results

Underlying Events Definition Data Selection Results

Measurement of Underlying Events

- Underlying Events: soft processes accompanying hard parton-parton interaction in proton-proton collisions
- η, φ plane divided into regions around leading (the highest p_T) object (track, calo. cluster, jet...):

•
$$|\Delta arphi| < 60^\circ$$
 - toward

•
$$60^\circ < |\Delta \varphi| < 120^\circ$$
 - transverse

• $|\Delta arphi| >$ 120° - away

leading jet $\Delta \phi$ towards $|\Delta \phi| < 60^{\circ}$ transverse transverse $60^{\circ} < |\Delta \phi| < 120^{\circ}$ $60^{\circ} < |\Delta \phi| < 120^{\circ}$ away $|\Delta \phi| > 120^{\circ}$

further subdivision of the observables on an event- $\downarrow \downarrow \downarrow$ by-event basis depending on which side of the event is more activity:

- trans-max: observables in the more-active transverse region
- trans-min: observables in the less-active transverse region
- trans-diff: difference of trans-max and trans-min

Underlying Events Definition Data Selection Results

UE - Using Neutral and Charged Particles

Topological clusters study:

- to extend the η coverage of the measurement beyond the ATLAS central tracker acceptance of $|\eta| < 2.5$. The cluster-based observables have been studied separately for the central region ($|\eta| < 2.5$) and for full η acceptance
- based on calorimeter three-dimensional energy deposit
- benefit of fine granularity:
 - electromagnetic calorimeter:
 - 4 longitudinal depths
 - $\Delta\eta \times \Delta\varphi$: 0.003 × 0.1 0.05 × 0.025
 - hadronic calorimeter:
 - 3 longitudinal depths
 - $\Delta\eta \times \Delta \varphi$: 0.1 \times 0.1 for $|\eta|$ < 2.5
 - $\Delta\eta \times \Delta\varphi$: 0.2 × 0.2 for 2.5 < $|\eta|$ < 3.2
- sensitive to both neutral and charged particles
- complementary analyses to correspond. track based ones Phys. Rev. D 86 (2012) 072004 [arXiv:1208.0563] JHEP11(2012)033 [arXiv:1208.6256]

Data Selection

the full 2010 dataset of jet events in *pp* collisions at $\sqrt{s} = 7 \text{ TeV}$ collected by the ATLAS, with jets of $p_T > 20 \text{ GeV}$ and $|\eta| < 2.8$

429,000 (inclusive jet) and 99,000 (exclusive dijet) events selected - total luminosity: 37.3 \pm 1.2 pb^{-1}

Triggers:

MBTS to select events with jets with $20 < p_T < 60 \text{ GeV}$ the calorimeter-based jet trigger with tresholds over 60 GeV

Requirements:

- to remove cosmic ray muons and other background: at least one primary vertex and at least 5 associated tracks
- to reduce pile-up: events with more than one vertex with at least two associated tracks are removed
- additional req. for exclusive dijet selection: one and only one subleading jet with $p_T^{sub}/p_T^{lead} > 0.5$ and $|\Delta \phi| > 0.5$

Event Shapes Underlying Events Definition Underlying Events Data Selection Summary Results

Measured Observables at Particle and Detector Level

particle level:

- for momentum use only particles with $p_T > 0.5 \text{ GeV}$
- for energy analysis:
 - p > 0.5 GeV for charged particles
 - p > 0.2 GeV for neutral particles

Observable	Particle level	Detector level			
$p_{\mathrm{T}}^{\mathrm{lead}}$	Transverse momentum of the leading jet				
$d^2 N_{ch}/d\eta d\phi$	Mean number of stable charged particles per unit $\eta-\phi$	Mean number of selected tracks per unit $\eta-\phi$			
$d^2\Sigma p_{ m T}/d\eta d\phi$	Mean scalar ${\it p}_{\rm T}$ sum of stable charged particles per unit $\eta-\phi$	Mean scalar ${\it p}_{\rm T}$ sum of selected tracks per unit $\eta-\phi$			
$d^2\Sigma E_{ m T}/d\eta d\phi$	Mean scalar $E_{\rm T}$ sum of stable charged and neutral particles per unit $\eta-\phi$	Mean scalar E_T sum of selected EM-scale topoclusters per unit $\eta - \phi$			

- the total transverse activity increases with p_T^{lead} according to both, the $\sum p_T$ and N_{ch}
- MC models reproduce data well, PYTHIA 6 (most UE tunning attention) surprisingly further than HERWIG++ and HERWIG/JIMMY

- the trans-max activity grows with p_T^{lead} , while trans-min complement is almost constant according to both, the $\sum p_T$ and N_{ch}
- compatible with interpretation: trans-min region being less affected by the hard part of UE
- $\bullet\,$ trans-diff (most sensitive to additional hard scattering) increases with $p_{\rm T}^{\rm lead}$

- the total transverse activity slightly decrease with p_T^{lead} according to both, the $\sum p_T$ and N_{ch}
- the MC models describe exclusive dijet observables better than inclusive jet ones (PYTHIA 6 models particularly improved)

• for N_{ch} , both, trans-max and trans-min are falling with p_{T}^{lead}

- for $\sum p_T$, trans-max roughly constant, trans-min falls with p_T^{lead} \Rightarrow major effect of the exclusive dijet selection is to exclude events where extra jets were produced by MPI activity \Rightarrow only events with low average transverse activity pass the selection
- trans-diff is essentially flat with $p_{\rm T}^{\rm lead}$

- trends are similar to those for track-based observables
- the comparison between the data and MC models is comparable to that seen for charged particle $\sum p_T$ plots

increased disagreement between the MC models and the data

- the MC models undershoot the observed level of activity at low p_T^{lead} values in both the inclusive and exclusive event selections \rightarrow it is notable as all MPI models have been tuned to observables measured for central rapidities
- models predict a faster rise of $E_{\rm T}$ vs $p_{\rm T}^{\rm lead}$ than seen in the data

Summary of the Event Shapes Analysis Summary of the Underlying Events Analysis

Overview

- Measurement of charged-particle EVENT SHAPE variables in inclusive $\sqrt{s} = 7$ TeV proton-proton interactions with the ATLAS detector Phys. Rev. D 88, 032004 (2013) [arXiv:1207.6915]
- 2 The UNDERLYING EVENT in jet events at $\sqrt{s} = 7$ TeV with the ATLAS experiment ATLAS-CONF-2012-164

3 Summary

- Summary of the Event Shapes Analysis
- Summary of the Underlying Events Analysis

Summary. Event shapes in inclusive 7 TeV proton-proton interactions

- the event shape observables (transverse thrust, transverse thrust minor, and transverse sphericity) measured in inelastic *pp* collisions at $\sqrt{s} = 7$ TeV requiring at least 6 charged particles per event selected by a minimum-bias trigger
- the distributions of all three event shape variables show an evolution toward less spherical events as p₁^{lead} increases, the effect is biggest for the transverse sphericity
- similar dependences of the event shape mean values as functions of N_{ch} and ∑ p_T are reconstructed
- with increasing multiplicity evolution toward a more spherical event shape seen
- the PYTHIA6 MC generator with the Z1 tune: the most accurate description of the observed distributions

Summary. Underlying event in jet events at 7 TeV

- measurements sensitive to the underlying event in 7 TeV pp collisions at the LHC is presented, observables constructed with respect to calorimeter jets with p_T up to 800 GeV
- using inclusive jet and exclusive dijet events
- rising levels of transverse activity as a function of leading jet p_T in the inclusive jets event selection is observed, except for the inclusive trans-min region
- MC models qualitatively describe behaviours well, but with some discrepancies: inclusive jet distributions better described by Herwig generators exclusive dijet distributions better described by the Pythia 6
- full $|\eta|$ -range cluster observables larger deviations from MC predictions than in the central region

Backup slides

Sphericity

full momentum tensor of the event:

$$M_{\alpha\beta} = \sum_{i} p^{i}_{\alpha} p^{i}_{\beta} \qquad \alpha, \beta = x, y, z$$

- sum runs over all charged particles in the event
- eigenvalues λ₁, λ₂, λ₃ are normalized ∑_i λ_i = 1 and ordered that λ₁ > λ₂ > λ₃

Sphericity S measures the summed p_T^2 with respect to the event axis (the line passing through the interaction point and oriented along the eigenvector associated with the largest eigenvalue, λ_1)

$$S=rac{3}{2}(\lambda_2+\lambda_3)$$

- S = 0 for a balanced dijet event
- *S* = 1 for an isotropic event

Monte Carlo Models in Event Shapes Analysis

Generator	Version	Tune	PDF	Focus	Data	From
PYTHIA 6 PYTHIA 6 PYTHIA 6 PYTHIA 8 HERWIG ++ PYTHIA 6 HERWIG ++	6.425 6.421 6.425 8.157 2.5.1 6.425 2.5.0	AMBT2B DW Z1 A2 UE7-2 AMBT1 Default	CTEQ6L1 CTEQ5L CTEQ5L MSTW2008LO MRST LO** MRST LO** MRST LO**	MB UE MB UE MB UE	LHC Tevatron LHC LHC LHC Early LHC LHC	ATLAS CDF CMS ATLAS Authors ATLAS Authors

- predictions from 5 different MC models (PYTHIA 6 AMBT2B, PYTHIA 6 DW, PYTHIA 6 Z1, PYTHIA 8 A2, and HERWIG ++ UE7-2) are compared to observed data
- PYTHIA 6 AMBT1 reference model for the analysis used to correct the data for detector effects
- HERWIG ++ 2.5.0 used for systematic studies

Monte Carlo Models of Underlying Event

All leading-order parton shower generators, differ in hadronisation models and parton shower formalisms:

PYTHIA6 - hadronisation model based on the Lund string and a p_T- or

virtuality-ordered parton shower

- AMBT1 first LHC-data tune, diffraction-suppressed observables from the early ATLA MB measurements, MRST LO* parton density functions (PDFs) and the Pythia p₁-ordered parton shower - in this analysis used to correct the data for detector effects
- AUET2B CTEQ6L1 latest set ATLAS UE tunes, improvement: inclusion of a LEP-based retuning
 of final state shower and hadronisation efects, optimising initial state shower parameters by
 comparison to ATLAS track jet, jet shapes and dijet decorrelations data; CTEQ6L1 PDF variant
- DW virtuality-ordered parton shower and a MPI model not interleaved with the ISR, description of CDF Run II UE and Drell-Yan data, leading-order CTEQ5L1 PDF
- PYTHIA8 also the FSR, together with ISR emission and MPI scatterings
 AU2 CT10 variant of latest ATLAS UE tune, next-to-leading order CT10 PDF
- HERWIG/JIMMY and HERWIG⁺⁺ cluster hadronisation scheme, parton showers ordered in emission angle; Herwig not simulating multiple partonic interactions: added by the Jimmy package

ALPGEN - leading-order multi-leg matrix element events, more complex hard

process topologies, loop diagram contributions omitted

- HERWIG/JIMMY AUET2 LO⁺⁺
- ALPGEN + HERWIG/JIMMY AUET1 older tune
- HERWIG++ UE7-2 MRST LO⁺⁺ includes a colour reconnection model good description of both UE and MB data at 7 TeV