Search for alpha-cluster gas state in medium heavy nuclei

Hidetoshi Akimune Konan University

- Introduction
- α cluster state in $N=Z=2 n$ nuclei
- Multi particle decay measurement and inverse kinematics experiment
- The first experiment
- ${ }^{4} \mathrm{He}\left({ }^{56} \mathrm{Ni}, \mathrm{n} \alpha\right)$ at GANIL
- Recent experiment
- ${ }^{4} \mathrm{He}\left({ }^{36} \mathrm{Ar}, \mathrm{n} \alpha\right)$ at RCNP

Alpha cluster structure in medium heavy nuclei

Candidate for α cluster state search in the nuclear chart

${ }^{40} \mathrm{Ca}$ is the heaviest in stable nuclei
${ }^{56} \mathrm{Ni}$ is the almost heaviest $\mathrm{N}=\mathrm{Z}$ nucleus to be obtained at recent RI beam facility

α cluster state in medium heavy

 nuclei- Theoretically, existence of the α cluster states in several nuclei are actively discussed
- Bose-Einstein condensed state of $n \alpha$ system
- $r=1.2 \sim 1.5 \times r_{0}$
- $\rho \sim 1 / 2 \rho_{0}$
N. Ltagaki etal. PRC 77 (2008) 03730
- Access to low kT, low density nuclear matter
- Experimentally,
- We do not know
- how to excite α cluster state.

- Inelastic scattering? HI-HI collision? α transfer reaction?......
- how to detect signals.
- One straight forward way is to see α decay. It might be a good candidate, but is it enough ?
- Almost no attempts have been done to find cluster state in medium heavy nuclei experimentally

Inverse Kinematics Experiment

- Inverse Kinematics
- Detect multi alphas emission from incident nuclei
- At $\mathrm{E}=50 \mathrm{MeV} / \mathrm{u}$
- Inverse Kinematics <-> Normal Kinematics
- + High acceptance for decaying particles is achievable
- + Easy to detect decaying particles with small relative momentum to the incident particle
- - Incident particle and decaying particle has the same P/A and P / Z. This makes background at forward angles
- - Estimation of excitation energy is not easy
- It is not easy to measure energy and angles of recoiled target particle
"normal kinematics"

E605 at GANIL (May 2011)

- ${ }^{56} \mathrm{Ni}$ beam with $\mathrm{E}=50 \mathrm{MeV} / \mathrm{u}$
- Active gas target system MAYA.
- Charged particles scattered to
- backward angles are tracked by ${ }^{4} \mathrm{He}$ TPC, which works as active ${ }^{4} \mathrm{He}$ target.
- In our analysis, ${ }^{4} \mathrm{He}$ gas TPC is used only to determine the vertex point of reaction.
- forward angles are detected by a $\Delta \mathrm{E} / \mathrm{E}$ counter telescope wall, whirh ronsists of 5×4 Silirnn detertors and 10×8 rsl scintillaters

Result of ${ }^{4} \mathrm{He}\left({ }^{56} \mathrm{Ni}, \mathrm{nX}\right)$ experiment

- The maximum multiplicity for α is $7!$
- Half mass of ${ }^{56} \mathrm{Ni}$ decays to α particles
- Decay constant for α is the smallest compare to other decay elements.
- Striking enhancement of α multiplicity
- Strongly suggests existence of α cluster state in

multiplicity

multiplicity ${ }^{58} \mathrm{Ni}$

Comparison with statistical decay model
 Statistical decay model calculation code "CASCADE"

- Exact treatment of the spin, parity, isospin selection rule
- $\quad \gamma, \mathrm{n}, \mathrm{p}, \alpha$ decay channels are taken into account.
- Decay thresholds energies are taken from the mass table.
- Phenomenological level densities and penetration probabilities for n, p, α

Multiplicity for α is estimated to be 1~2.
Statistical decay model can not explain the enhancement of multiplicity of α particles

Comparison with classical gas model

- In this model, excited ${ }^{56} \mathrm{Ni}$ is considered to consist of 14 free α 's
- These α 's are assumed to be in classical ideal gas state
- Probability for α with momentum p is given by Maxwell-Boltzmann distribution:

$$
f(\mathbf{p}) \propto \exp \left(-\frac{\mathbf{p}^{2}}{2 m k_{B} T_{\alpha}}\right)
$$

- Here
p: momentum of α in the rest system of ${ }^{56} \mathrm{Ni}$
T_{α} : Temperature of α gas
- k: Boltzmann constant

$$
E x \sim E_{t h}(n \alpha)+3 n k T_{\alpha} / 2
$$

Momentum distribution of α

Experiment

Single event with
$\mathrm{M}=7$

Simulation for $k T_{\alpha}=5 \mathrm{MeV}$, including the efficiency of the detector MAYA

Classical gasmodel fairly well reproduces the experimental multiplicity of α and the momentumn mution.

E391 at RCNP Osaka (May 2013)

Experimental setup in E605, MAYA is insensitive for lower kT_{α}

- We started Inverse Kinematics experiment with stable heavy ion beam
- Primary ${ }^{36} \mathrm{Ar}$ beam with $50 \mathrm{MeV} / \mathrm{u}$

$$
\cdot \sim 10 \mathrm{pnA}, 16+{ }^{36} \mathrm{Ar}
$$

- In order to improve detection efficiency for Low $\mathrm{k} \mathrm{T}_{\alpha}$,
- Magnetic spectrometer is set at 0 deg.
- In order to detect α 's at backward angles,
- Si+Csl counter telescope array

Experimental Setup

- LAS (Large Acceptance Spectrometer)
- At 0 degree
- $\pm 50 \mathrm{mr} \times \pm 50 \mathrm{mr}(\pm 3 \mathrm{deg} \times \pm 3 \mathrm{deg})$
- $\delta p / p=30 \%$
- Segmented Hodoscopes
- p : momentum of α
- p_{0} : momentum of α rest on cm system of ${ }^{36} \mathrm{Ar}$

Silicon+Csl Counter array

- Alpha particles at backward angles ($8 \mathrm{deg}<\theta$)
- E $\Delta \mathrm{E}$ counter telescope array
- Silicon detector $60 \mathrm{~mm} \times 90 \mathrm{~mm} \times \mathrm{t} 500 \mu \mathrm{~m}$ - 4 sets
- Csl $30 \mathrm{~mm} \times 30 \mathrm{~mm}$
- 24 sets

Acceptance for multi alpha event

- $9 \alpha \mathrm{E}_{\mathrm{th}}=52.5 \mathrm{MeV}$
- Dot plot
- Momentum distribution ${ }^{N}$ of α particles emitted from ${ }^{36} \mathrm{Ar}$
- For kT = 1.0 and 0.5 MeV
- Locus at low p: recoiled α
- LAS
- Forward angels
- $0<\theta<3$ deg
- $\mathrm{Si}+\mathrm{CsI}$
- Backward angles
- $8<\theta<40 \mathrm{deg}$

Incident beam
$\stackrel{N}{\lambda}$

Result of ${ }^{4} \mathrm{He}\left({ }^{36} \mathrm{Ar}, \mathrm{nX}\right)$ experiment

- Silicon + CsI
- Particle Identificatio条 works very well

Multiplicity of alpha particles I

- Number of α 's at forward angles (LAS)
- $\theta_{\alpha}<3$ deg, $100 \mathrm{MeV}<\mathrm{E}_{\alpha}<200 \mathrm{MeV}$
- Decay constants for ${ }^{4} \mathrm{He}$ target and heavier nuclei targets such as $\mathrm{C}, \mathrm{N}, \mathrm{O}$ are almost same.

Multiplicity of alpha particles II

 - Number of α 's at backward angles (Si+CsI) - $8 \mathrm{deg}<\theta_{\alpha}<40 \mathrm{deg}, 100 \mathrm{MeV}<\mathrm{E}_{\alpha}<300 \mathrm{MeV}$
e target is larger than other heavier nuclei targets such as $\mathrm{C}, \mathrm{N}, \mathrm{O}$ (cell material)

Mean kinetic energy of α 's in ${ }^{36}$ Ar's cm system
 - Peak at $\mathrm{E} \sim 0.5 \mathrm{MeV}$

- Simulation with $k T_{\alpha}=1 \mathrm{MeV}$ well reproduces the experimental result

Summary

- ${ }^{4} \mathrm{He}\left({ }^{56} \mathrm{Nr}, \mathrm{n} \alpha\right)$ experiment has been performed at GANIL
- ${ }^{4} \mathrm{He}\left({ }^{36} \mathrm{Ar}, \mathrm{n} \alpha\right)$ experiment has been performed at RCNP
- In both experiments, high α multiplicity events were detected
- At backward angles, excitation energies for multi α decay events are estimated to be about

$$
\mathrm{kT}_{\alpha}=5 \mathrm{MeV}
$$

Both experimental results are consistent

- Magnetic spectrometer was applied to measure α particles at forward angles
- At forward angels. excitation energies are estimated to be about
- $\mathrm{kT}_{\alpha}=1 \mathrm{MeV}$.
- These experimental result suggest excitation of α cluster state in medium heavy nucle
- Questions arise from our experiment
- May we call it " α gas state"?
- Is multi α decay is unique for $A=4 n, N=Z=2 n$ nuclei?
- For the incident energy, how much energy is suitable?
- $50 \mathrm{MeV} / \mathrm{u}$: Energy region where ISGMR is strongly excited is suitable

