Search for alpha-cluster gas state in medium heavy nuclei

Hidetoshi Akimune Konan University

- Introduction
 - α cluster state in N=Z=2n nuclei
- Multi particle decay measurement and inverse kinematics experiment
- The first experiment
 - 4 He(56 Ni,n α) at GANIL
- Recent experiment
 - 4 He(36 Ar,n α) at RCNP

Candidate for α cluster state search in the nuclear chart

⁴⁰Ca is the heaviest in stable nuclei

⁵⁶Ni is the almost heaviest N=Z nucleus to be obtained at recent RI beam facility ² 8 Ar -185.85° -122.28° 18

39.948

17

S28 125 ms

α cluster state in medium heavy

n<u>uclei</u>

- Theoretically, existence of the α cluster states in several nuclei are actively discussed
 - Bose-Einstein condensed state of nα system
 - $r = 1.2 \sim 1.5 \times r_0$
 - $\circ \quad \rho{\sim}1/2 \ \rho_0$

- A. Tohsaki, H. Horiuchi, P. Schuck and G.Ropke, PRL 87 (2001) 192501 T. Yamada and P. Schuck PRC 69 (2004) 024309 N. Itagaki et al. PRC 77 (2008) 037301 etc.
- Access to low kT, low density nuclear matter

Experimentally,

- We do not know
 - how to excite α cluster state.
 - Inelastic scattering? HI-HI collision? α transfer reaction?.....
 - how to detect signals.
 - One straight forward way is to see α decay. It might be a good candidate, but is it enough ?
- Almost no attempts have been done to find cluster state in medium heavy nuclei experimentally

Inverse Kinematics Experiment

- Inverse Kinematics
 - Detect multi alphas emission from incident nuclei
 - At E = 50 MeV/u

"normal kinematics"

- Inverse Kinematics <-> Normal Kinematics
 - + High acceptance for decaying particles is achievable
 - + Easy to detect decaying particles with small relative momentum to the incident particle
 - Incident particle and decaying particle has the same P/A and P/z. This makes background at forward angles
 - Estimation of excitation energy is not easy
 - It is not easy to measure energy and angles of recoiled target particle

"inverse kinematics"

WPCF 2013, Acireale

E605 at GANIL (May 2011)

• ⁵⁶Ni beam with E = 50 MeV/u

- Active gas target system MAYA.
 - Charged particles scattered to
 - backward angles are tracked by ⁴He TPC, which works as active ⁴He target.
 - In our analysis, ⁴He gas TPC is used only to determine the vertex point of reaction.
 - forward angles are detected by a $\Delta E/E$ counter telescope wall, which consists of 5x4 Silicon detectors and 10x8 CsI scintillaters

Result of ⁴He(⁵⁶Ni,nX) experiment

- The maximum multiplicity for α is 7!
 - Half mass of ⁵⁶Ni decays to α particles
- Decay constant for α is the smallest compare to other decay elements.
- Striking enhancement of α multiplicity
- Strongly suggests existence of α cluster state in ⁵⁸Ni

Comparison with statistical decay model

- Statistical decay model calculation code "CASCADE"
- Exact treatment of the spin, parity, isospin selection rule
- > γ , n, p, α decay channels are taken into account.
- > Decay thresholds energies are taken from the mass table.
- \blacktriangleright Phenomenological level densities and penetration probabilities for n, p, α

Comparison with classical gas model

- In this model, excited ⁵⁶Ni is considered to consist of 14 free α 's
- These α's are assumed to be in classical ideal gas state
- Probability for α with momentum p is given by Maxwell-Boltzmann distribution:

$$f(\mathbf{p}) \propto \exp(-\frac{\mathbf{p}^2}{2mk_B T_{\alpha}})$$

- Here
- > p: momentum of α in the rest system of ⁵⁶Ni
- T_{α} : Temperature of α gas
- k: Boltzmann constant
- $Ex \sim E_{th}(n\alpha) + 3nkT_{\alpha}/2$

Momentum distribution of $\boldsymbol{\alpha}$

Experiment

Sum of evens with M>4

Simulation for $kT_{\alpha} = 5$ MeV, including the efficiency of the detector MAYA

Classical gas model fairly well reproduces the experimental multiplicity of α and the momentum statibution. WPCF 2013, Acireale 11

E391 at RCNP Osaka (May 2013)

- Experimental setup in E605, MAYA is insensitive for lower kT_{α}
- We started Inverse Kinematics experiment with stable heavy ion beam
- Primary ³⁶Ar beam with 50 MeV/u
 - ~10 pnA, 16+ ³⁶Ar
- In order to improve detection efficiency for Low kT_{α} ,
 - Magnetic spectrometer is set at 0 deg.
- In order to detect α 's at backward angles,
 - Si+CsI counter telescope array

Experimental Setup

- LAS (Large Acceptance Spectrometer)
 - At 0 degree
 - \pm 50 mr \times \pm 50 mr (\pm 3deg \times \pm 3 deg)

Silicon+Csl Counter array

- > Alpha particles at backward angles (8 deg < θ)
 - E Δ E counter telescope array
- Silicon detector 60 mm x 90 mm x t500 µm
 - 4 sets
- Csl 30 mm x 30 mm
 - 24 sets

0

Acceptance for multi alpha event

- $9\alpha E_{th} = 52.5 \text{ MeV}$
 - Momentum distribution
 of α particles emitted from ³⁶Ar
 - For kT = 1.0 and 0.5 MeV
 - Locus at low p: recoiled
 α
 - LAS
 - Forward angels
 - $0 < \theta < 3 \text{ deg}$
- Si+CsI
 Backward angles
 - 8<θ<40 deg
- Incident beam

Result of ⁴He(³⁶Ar,nX) experiment

Multiplicity of alpha particles I

- Number of α 's at forward angles (LAS)
 - $\circ~\theta_{\alpha} < 3~deg,~100~MeV < E_{\alpha} < 200~MeV$

 Decay constants for ⁴He target and heavier nuclei targets such as C, N, O are almost same.

Summary

- ${}^{4}\text{He}({}^{56}\text{Nr},n\alpha)$ experiment has been performed at GANIL
- ${}^{4}\text{He}({}^{36}\text{Ar},n\alpha)$ experiment has been performed at RCNP
- > In both experiments, high α multiplicity events were detected
- At backward angles, excitation energies for multi α decay events are estimated to be about

 kT_{α} =5 MeV

- Both experimental results are consistent
- Magnetic spectrometer was applied to measure α particles at forward angles
- > At forward angels. excitation energies are estimated to be about
- $kT_{\alpha} = 1 MeV.$
- > These experimental result suggest excitation of α cluster state in medium heavy nucle
 - Questions arise from our experiment
 - May we call it "α gas state"?
 - Is multi α decay is unique for A=4n, N=Z=2n nuclei?
 - For the incident energy, how much energy is suitable?
 - 50 MeV/u: Energy region where ISGMR is strongly excited is suitable

