

Some studies in 2HDM benchmarking

N. Rompotis, A. Goussiou with a lot of input from Oscar Stål and Robert Harlander

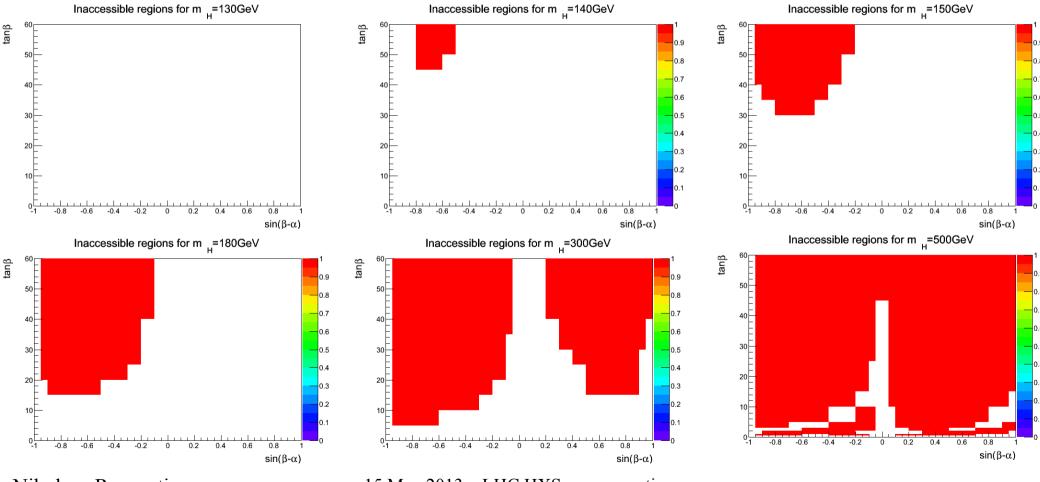
Introduction

- There is some difficulty in getting points in the 2HDM parameter space, which fulfil theoretical constraints such as unitarity, perturbativity and potential stability
 - Just try a simple scan yourself and you will understand what I mean here; demonstrated also in previous discussions in this group
- Oscar suggested to try the following
 - Assume some degeneracy in the higgs boson masses
 - Then try to fine tune the m12 parameter such that the model is valid

The assumption of higgs mass degeneracy is motivated: precision electroweak measurements suggest that for a light h at least 2 of the H/A/H+ are approximately degenerate in mass

2HDM Scans: Method

- I have tried to implement Oscar's suggestion
 - randomly choosing m_{12} such that $0 < \lambda_1 < 10$ (D13 from PRD67,07519)
 - Masses $m_H = m_A = m_{H+}$
- In this way we can get a lot of points, but not all of them
- Besides, m₁₂ is different in each of them


Example from mH = 130 GeV; in this case all points are ok for any sba and tanb

mH tanb	cba	sba	mA	mCh	lam	lamA	lamF	laml	m12_2	Val
130 0.5	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	0.35	-2664.3202	0
130 1.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	1.29	-23068.0618	0
130 2.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	5.76	-26722.6896	0
130 3.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	3.89	-2374.5681	0
130 5.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	0.41	3126.7020	0
130 10.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	3.01	1488.8567	0
130 15.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	0.19	1111.3785	0
130 20.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	0.78	830.8731	0
130 25.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	2.12	661.5569	0
130 30.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	4.07	549.1962	0
130 35.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	3.63	473.5388	0
130 40.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	3.70	415.4118	0
130 45.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	3.81	369.8823	0
130 50.0	0.3122	-0.9500	130.0	130.0	124.57	-1026.10	0.00	4.19	333.1772	0

2HDM Scans: Failed Points

 Scans aren't successful all the time: failure to get valid point is denoted by coloured part on the plot

Nikolaos Rompotis

15 May 2013 - LHC HXS group meeting

2HDM Scans: m₁₂ fine tuning

- The fact that we couldn't find points in all plots doesn't necessarily mean that there aren't valid points at all
 - Evidence for high level of fine tuning needed for m₁₂
 - It is also clear that you cannot get for the same m_{12} all the range of tan β s

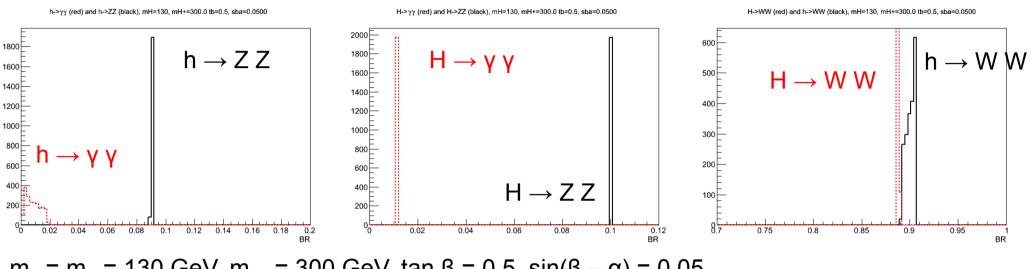
mH	cba	ç	sba ı	m12_2	t	anb=1.0	tanb=5.0	tanb=1	0.0	tanb=15.0	tanb=20		
130	0.3	122 -0	0.9500	800.00	00 0		FAILED	FAILED		FAILED	FAILED		
130	0.3	122 -0	0.9500	830.00	00 0		FAILED	FAILED		FAILED	0		
130	0.3	122 -0	0.9500	840.00	00 0		FAILED	FAILED		FAILED	FAILED		
130	0.3	122 -0).9500	900.00	00 0		FAILED	FAILED		FAILED	FAILED		
130	0.3	122 -0).9500	1000.00	00 0		FAILED	FAILED		FAILED	FAILED		
130	0.3	122 -0	0.9500	1100.00	00 0		FAILED	FAILED		0	FAILED		
130	0.3	122 -0	0.9500	1200.00	00 0)	FAILED	FAILED		FAILED	FAILED		
130	0.3	122 -0	0.9500	1300.00	00 0)	0	FAILED		FAILED	FAILED		
130	0.3	122 -0).9500	1400.00	00 0)	0	FAILED		FAILED	FAILED		
130	0.3	122 -0).9500	1500.00	00 0)	0	0		FAILED	FAILED		
130	0.3	122 -0).9500	1600.00	00 0)	0	0		FAILED	FAILED		
extre	eme fi	ne tun:	ing										
	tanb		sba	mA	mCh	lam	lamA		amF	laml	m12_2	Validate	
	40.0	0.6000			140.0	1431.26			.00	7.22	445.0000	FAILED	
	40.0	0.6000	0 -0.8000		140.0	1431.26	-1112.	.68 0	.00	6.16	446.0000	FAILED	· · · ·
140	40.0	0.6000) -0.8000	140.0	140.0	1431.26	-1112.	.68 0	.00	5.11	447.0000	FAILED	
140	40.0	0.6000) -0.8000	140.0	140.0	1431.26	-1112.	.68 0	.00	4.05	448.0000	0	
140	40.0	0.6000	0 -0.8000	140.0	140.0	1431.26	-1112.		.00	2.99	449.0000	FAILED	
140	40.0	0.6000) -0.8000	140.0	140.0	1431.26	-1112.	.68 0	.00	1.93	450.0000	FAILED	
ЪТ'1 1	Ъ				1 -	N 0010		70					

Nikolaos Rompotis

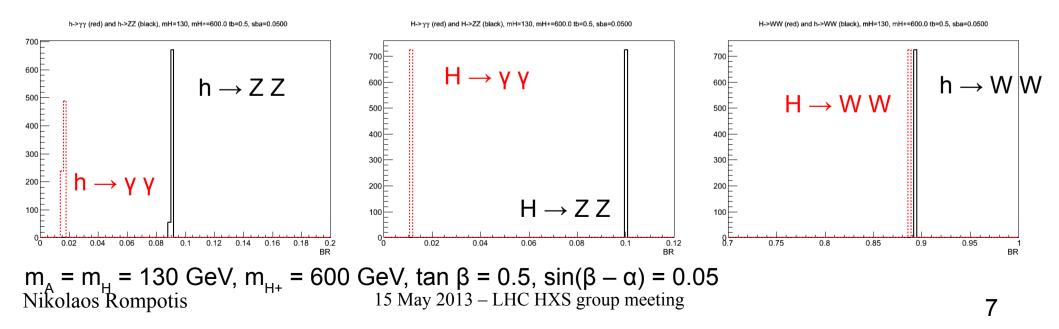
15 May 2013 – LHC HXS group meeting

Does m₁₂ value matter?

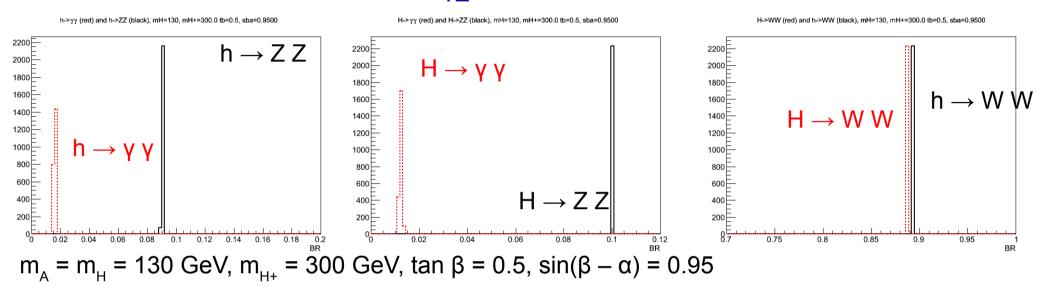
 The m₁₂ value of the potential mostly affects us due to the hH⁺H⁺ coupling


$$g_{hH^+H^+} = -rac{1}{u}[(m_h^2 - rac{m_{12}^2}{sineta coseta})rac{cos(eta + lpha)}{sineta coseta} + (2m_{H^+}^2 - m_h^2)sin(eta - lpha)]$$

- This mostly affects h $\rightarrow \gamma \gamma$ / W W BR
- Examples in the next few slides


\mathbf{W} university of washington

Does m₁₂ value matter?

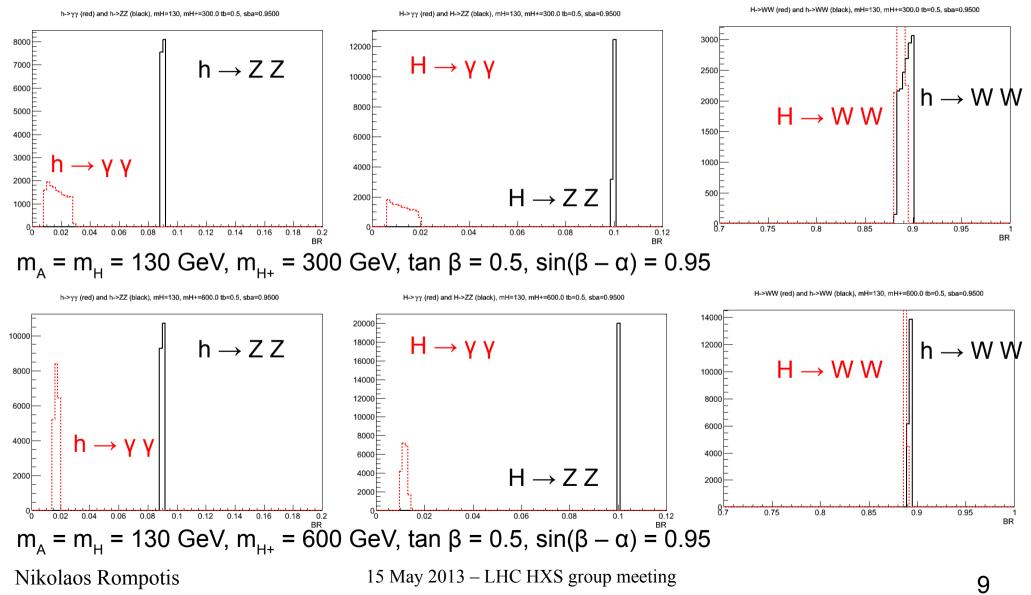


 $m_{_{\! A}}$ = $m_{_{\! H}}$ = 130 GeV, $m_{_{\! H^+}}$ = 300 GeV, tan β = 0.5, sin($\beta-\alpha)$ = 0.05

Does m₁₂ value matter?

These plots show that if we know that there are m_{12} choices that lead to valid models, then we can find a high $m_{H_{+}}$ limit such that the observables are independent of the m_{12} choice.

Question: what do we get if we ignore the theoretical constraints? If we know somehow that there is at least one m_{12} choice that makes the model valid then if we perform calculations using a random m_{12} what do we get?


Nikolaos Rompotis

\mathbf{W} university of washington

Does m₁₂ value matter?

removing the requirement that the model passes theoretical constraints

Some Numbers

mH	= mA = 130									
h:	ZZ mean 0.0878 (igma/mean 4.62%)	WW mean 0.8712 (sigma s 0.0402	1gma/mean 4.62%)	gamgam mean 0.0410 (sigma/mear 108.08%)	mH+=130GeV
h:	0.0908 (0.49%)	0.9007 (0.0045	0.49%)	0.0085 (57.90%)	mH+=300GeV
h:	0.0841 (0.0071	8.41%)	0.8347 (0.0702	8.41%)	0.0812 (0.0773	95.24%)	mH+=300GeV, no theo cons
h:	0.0901 (0.0001	0.07%)	0.8935 (0.0006	0.06%)	0.0164 (0.0006	3.89%)	mH+=600GeV
h: h:	0.0897 (0.0900 (0.0016	1.82%) 0.66%)	0.8896 (0.8926 (0.0162 0.0058	1.82%) 0.66%)	0.0207 (0.0174 (0.0178	85.97%) 36.96%)	mH+=600GeV, no theo cons mH+=1000GeV, no theo cons
н:	0.1003 (0.0002	0.16%)	0.8903 (0.0014	0.16%)	0.0094 (0.0016	16.59%)	mH+=130GeV
H:	0.1001 (0.0000	0.03%)	0.8886 (0.0003	0.03%)	0.0113 (0.0003	2.52%)	mH+=300GeV
н:	0.1001 (0.0003	0.30%)	0.8882 (0.0027	0.30%)	0.0117 (0.0030	25.19%)	mH+=300GeV, no theo cons
H:	0.1001 (0.1001 (0.0000 0.0001	0.00%) 0.07%)	0.8883 (0.8883 (0.0000 0.0007	0.00%) 0.07%)	0.0117 (0.0117 (0.0000	0.22%) 6.24%)	mH+=600GeV
н: н:	0.1001 (0.0001	0.07%) 0.03%)	0.8883 (0.0007	0.07%) 0.03%)	0.0117 (0.0007	6.24%) 2.24%)	mH+=600GeV, no theo cons mH+=1000GeV, no theo cons
тH	= mA = 130	GeV tan	b = 0.5	sin(h-a) =	0 95					
	ZZ mean	sigma s	igma/mean	WW mean	sigma s	igma/mean	gamgam mean	sigma	sigma/mear	
h: h:	0.0901 (0.0900 (0.0001 0.0005	0.06%) 0.58%)	0.8936 (0.8926 (0.0006 0.0052	0.06%) 0.58%)	0.0163 (0.0174 (0.0006	3.79%) 32.83%)	mH+=300GeV mH+=300GeV, no theo cons
	· · · · · · · · · · · · · · · · · · ·									
h: h:	0.0900 (0.0900 (0.0000 0.0001	0.01%) 0.14%)	0.8929 (0.8928 (0.0001 0.0013	0.01%) 0.14%)	0.0171 (0.0172 (0.0001 0.0014	0.39%) 8.22%)	mH+=600GeV mH+=600GeV, no theo cons
h:	0.0900 (0.05%)	0.8928 (0.05%)	0.0172 (0.0005	2.95%)	mH+=1000GeV, no theo cons
 н:	0.1000 (0.0000	0.05%)	0.8875 (0.0004	0.05%)	0.0125 (0.0005	 3.61%)	mH+=300GeV
н:	0.1000 (0.0004	0.41%)	0.8877 (0.0036	0.41%)	0.0123 (0.0040	32.53%)	mH+=300GeV, no theo cons
н:	0.1001 (0.0000	0.00%)	0.8882 (0.0000	0.00%)	0.0118 (0.0000	0.39%)	mH+=600GeV
н: н:	0.1001 (0.1001 (0.0001 0.0000	0.10%) 0.04%)	0.8882 (0.8882 (0.0009 0.0003	0.10%) 0.04%)	0.0118 (0.0117 (0.0010		mH+=600GeV, no theo cons mH+=1000GeV, no theo cons
						0.010,	0.011/ (0.0005	2.9707	
mH h:	= mA = mH+ 0.0897 (= 600 Ge 0.0016	V, tan b = 1.82%)	0.5 0.8896 (0.0162	1.82%)	0.0207 (0.0178	 86.13%)	sin(b-a) = 0.05, no theo cons
h:	0.0900 (0.0000	0.00%)	0.8924 (0.0000	0.00%)	0.0177 (0.0000	0.13%)	sin(b-a) = 0.95
h:	0.0900 (0.0001	0.14%)	0.8928 (0.0013	0.14%)	0.0172 (0.0014	8.21%)	sin(b-a) = 0.95, no theo cons
н:	0.2063 (0.0867	42.05%)	0.4261 (0.1792	42.05%)	0.0000 (0.0000		sin(b-a) = 0.05, no theo cons
н: н:	0.3256 (0.1108 (0.0007 0.0967	0.21%) 87.24%)	0.6725 (0.2290 (0.21%) 87.24%)	0.0000 (0.0000 (0.0000	-%)	sin(b-a) = 0.95 sin(b-a) = 0.95, no theo cons
N	Vikolaos R	ompotis			15 Ma	iy 2013 – I	LHC HXS gr	oup me	eting	
		-								

Some Numbers

- Conclusions (I)
 - As we increase m_{H^+} the $\gamma \gamma$ BR sensitivity on $m_{_{12}}$ decreases, but how strong this sensitivity is depends on sin(β - α)
 - Releasing the theoretical constraint of $m_{_{12}}$ gives similar mean values for the BR, but larger variations, which become less significant depending on $m_{_{H^+}}$ and $sin(\beta \alpha)$
 - If we are not affected by γ γ channels the dependence is in general very small => different statements about direct searches and constraints from h125 properties
 - Warning: these conclusions assume that
 - we can extrapolate from the values that we have chosen for m_{H} , m_{A} etc
 - there are no values of m₁₂ for which we can get completely different behaviour from the average
 - for each point there is at least one valid m_{12} choice

Nikolaos Rompotis

15 May 2013 – LHC HXS group meeting

Some Numbers

- Conclusions (II)
 - Direct searches (H \rightarrow WW/ZZ): Assuming high enough m_{H+} (e.g. m_{H+} > 600 GeV) the full sin($\beta \alpha$) space is available and it doesn't matter whether your choice of m₁₂ fulfils theoretical constraints at least for low m_H (<~500 GeV)
 - Indirect constraints from h125 properties:
 - For valid points and adequate high m_{H^+} we can get some small dependence vs m_{12} which is up the few % level depending on sin($\beta \alpha$) but also the A, H mass choice
 - If we remove the theoretical constraints there is some tension for to have variations in the γ γ BR which is of order 10%
 - Note that if you are interested only on h → WW/ZZ then the dependence is much smaller (from sub-% to few %)

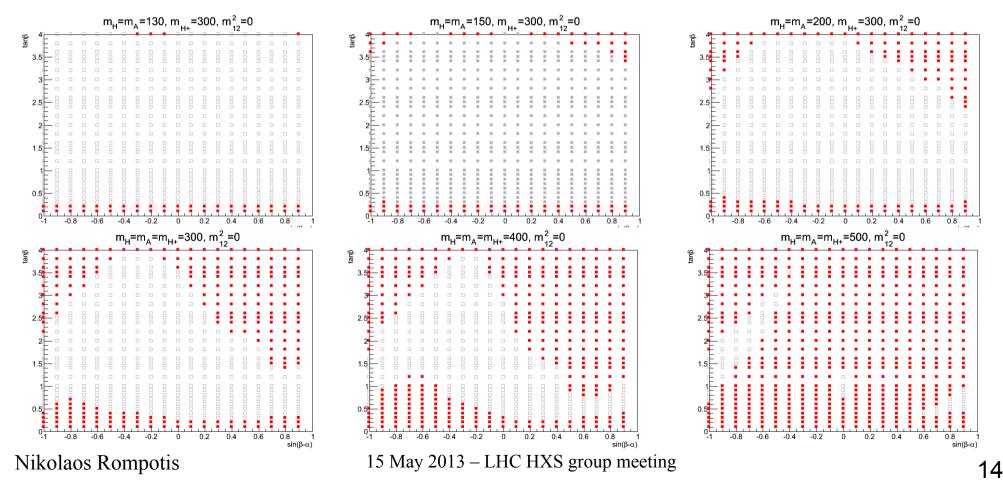
Conclusions for Benchmarking

- There seem to be 3 easy ways for benchmarking
 - For direct searches for low mass H \rightarrow WW/ZZ m₁₂ and theoretical constraints in practice are most probably not so relevant
 - For cases where there is dependence on m₁₂ we can define
 - " m_{12} = 0" benchmarks: easy to define but limited phase-space due to theoretical constraints to low tan β and low m_{H}
 - "sin($\beta \alpha$) \rightarrow 1" benchmark:

SM-like limit; it is most probably easier to find some way to fine-tune m_{12} such that the model is valid; hope to be able to access high $m_{\rm H}$ too

Caveats:

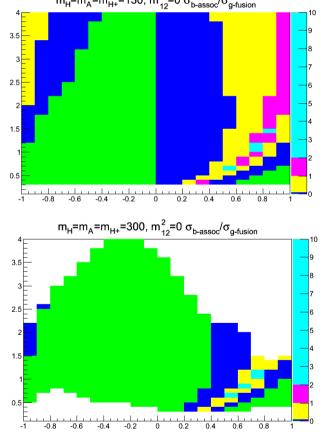
 \rightarrow there is no consideration of potential effects of m₁₂ in the production cross section, assuming that if the BRs are ok then the production is ok too

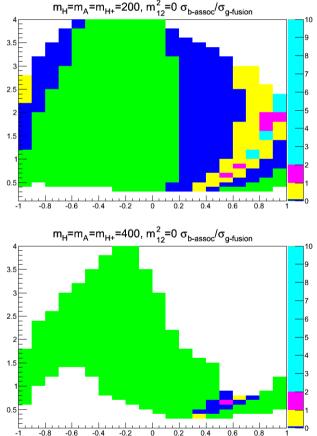

 \rightarrow so far I have provided no evidence in support of a way to access high m_H (>500 GeV)

"m₁₂=0" Benchmark

• In the following I will show some studies on the m₁₂=0 benchmark

Red points denote configurations with failing some theoretical constraint

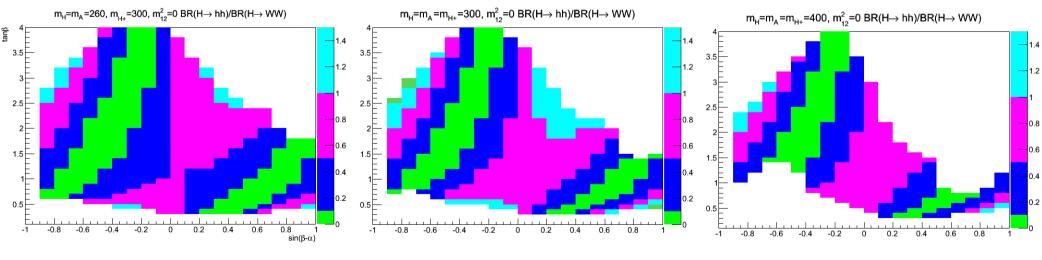




"m₁₂=0": ggH vs bbH for type II

 In most of the relevant parameter space ggH dominates, but nevertheless there are some places where bbH is important

Color code: green < 1%, blue < 10%, yellow < 100%, magenta 100%-200%, light blue > 200%



"m₁₂=0": other contributions to the signal

- There may be other decays that should be included in our signal. This may include
 - $A \rightarrow \tau \tau$, $H \rightarrow h h$, $H^{+} \rightarrow Wh$, $A \rightarrow Zh$, $A/H \rightarrow tt$, ...
 - All these need to be checked

BR($H \rightarrow hh$) / BR($H \rightarrow WW$) for type II and various mass configurations. For large parts of the parameter space the $H \rightarrow hh$ is comparable to $H \rightarrow WW$

Nikolaos Rompotis

15 May 2013 - LHC HXS group meeting

Outlook & Conclusions

- Clearly defined benchmarks are needed for 2HDM studies suitable for direct searches and constraints from h125 properties
 - Choice of parameters may be non-trivial due to violation of theoretical constraints (unitarity, potential stability, pertubativity)
- We provided some evidence that it is possible to think of benchmarks for $H \rightarrow WW$ / ZZ, which are independent of such constraints for low mass mH (<500 GeV)
- For high mH and properties may be less straightforward to be convinced that there is an easy way to define such a benchmark
 - " $m_{12}=0$ " and " $sin(\beta \alpha) \rightarrow 1$ " benchmarks may be a possible way out; nevertheless, there may be other ways too
- In any case we have to careful to evaluate the effect of signal production mechanisms and possible decay channels that come with the particular benchmark
 - e.g. $H \rightarrow hh$ is a significant channel for many configurations