
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Instrumentation and algorithms for 1 millimeter
resolution clinical PET
Outline of Talk:
-Brief review of positron emission tomography (PET)
-ls 1 mm resolution PET possible?
-Why 1 mm resolution rather than 2,3 , or 4 mm ?
-What are the challenges of achieving 1 mm resolution clinical PET?
-What is the basic design to achieve 1 mm resolution?
-How do we achieve this 1 mm resolution design?
-New algorithms for this 1 mm resolution design
-Summary
S.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Molecular Imaging
Program at Stantord
\qquad

-Brief review of PET

Moloculuar lmaging
Program at Stantord
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Basic principles of PET

\qquad

MIPS Molocular Imaging
Program at Stantorc \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Is 1 mm resolution clinical PET possible?
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Limitations on PET Spatial Resolution
-Positron Range
-Annihilation Photon Non-collinearity \qquad
-Detector Element Width \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Monte Carlo simulations of dual-head PET system

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lesion visualization with hot heart/warm torso
Tumors + breast tissue + heart + torso ($5: 1: 5: 1$ activity concentration ratio), 4 cm plate separation, 30 -second acquistion time

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What are the challenges of achieving 1 mm resolution for clinical PET?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Stanford University Department of Racioliogy
\qquad

A PET system is a ring of 511 keV photon detectors

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard PET detector technology

Standard PET detector technology

Resolving crystals in PET Detectors

\qquad
\qquad

What are the challenges of achieving 1 mm

Limitations of the Standard PET/CT Camera

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Approaches to improve photon sensitivity for PET

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What about high sensitt ity "spot" imaging?

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

511 keV photon penetration in crystals

Side view of array

Top view

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Close proximity + new 3-D positioning detector design

\qquad
\qquad
\qquad

Form stacks of these dual-LYSO-PSAPD-flex modules

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Measured response lines for one detector layer from the two panels

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Point spread function measurements \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

MIPS

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Thermal management system... \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Component name	\#	Description
Dual Module	128	2 LYSO arrays/2 PSAPDs each
Sensor Registration Card	8	16 dual modules each
Flat flexible cable	64	HV/LV interconnect
High Voltage Bias Board	1	432 channel DAC
Discrete board	8	$\mathrm{LC}^{\text {a }}$ and temperature sensing Signal conditioning/AC coupling
RENA board	4	8 RENA-3 chips each 4 Xilinx FPGA each
DAQ board	1	4 Spartan FPGA chips
Electronic Channels	1024	8 per dual module

Electronic Channels $\quad 1024 \quad 8$ per dual module
Molocular Imaging
Program at Stanford
\qquad
\qquad
\qquad
\qquad
\qquad

Summary of system performance goals

Parameter	Design Goal
System wide E	
System	$<11 \%$ FWHM
Crystal mide coincidentification probebability	$<10 \mathrm{~ns}$ FWHM
Intrinsic spatial resolution in 3-D	$<1 \mathrm{~mm}$
Identifiable phantom rods	$\leq 1 \mathrm{~mm}$
DAQ throughput rate	$>10^{6}$ events $/ \mathrm{sec}$
System photon sensitivity	$>10 \%$ (absolute)
Active PSAPDs	$>90 \%$
Front-end temperature and stability	$22 \pm 0.5^{\circ} \mathrm{C}$

System Performance So Far
(2-cartridges, 512 dual-LYSO-PSAPD modules)

Molocular I maging
Program at Stanford
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Point spread function measurements

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

3-D position sensitive scintillation detector

511 keV photon scatter in crystals

Side view of array

Top view

Advantages of 3-D positioning photon detectors: Intelligent positioning algorithms for photons that scatter in crystals
--->Better estimate of first interaction location

| $\substack{\text { Moloculuar Imaging } \\ \text { Program at Stantord }}$ |
| :--- | :--- |

Advantages of 3-D positioning photon detectors:
Intelligent positioning algorithms for photons that scatter in crystals
--->Better estimate of first interaction location \qquad

 Conventional PET detectors: Energy-weighted mean of interaction locations (in two-dimensions only)

Molocular Imaging
Program at Stantori
\qquad

Advantages of 3-D positioning photon detectors:
Intelligent positioning algorithms for photons that scatter in crystals
--->Better estimate of first interaction location \qquad

How does one position this photon event?

\qquad
\qquad
\qquad
\qquad

Advantages of 3-D positioning photon detectors: Intelligent algorithms to determine the sequence of multiple interactions
--->Better estimate of first interaction location---required to visualize smaller lesions
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Benefits of 3-D positioning detectors

\qquad
By resolving individual photon interactions in the detector, can: \qquad
-Correct parallax positioning errors (maintain uniform spatial resolution
-Reject background coincidence events
\qquad
\qquad
\qquad
\qquad Molecular Imaging
Program at Stantord
\qquad

Angular collimation to reject random coincidences

\qquad
\qquad
$\underset{\substack{\text { Molocular Imaging } \\ \text { Pocoram at Stanfors }}}{ }$ \qquad

Angular collimation to reject random coincidences

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Angular collimation to reject tissue scatter coincidences

Angular collimation to reject tissue scatter coincidences

\qquad

Benefits of 3-D positioning detectors

\qquad
By resolving individual photon interactions in the detector, can: \qquad
-Correct parallax positioning errors (maintain uniform spatial resolution
-Reject background coincidence events
-Include events normally rejected from the data set \qquad Molecular Imaging
Program at Stantord

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Benefits of 3-D positioning detectors

\qquad
By resolving individual photon interactions in the detector, can: \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

This system has billions of detector response lines!
Example data acquisition visualization of an event based simulation of a point source between two panels
\square Detected Line of Response
Detected Singles
\square Detected Coincidence

- Sample-Hold Collision - Shaper Pileup

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Moloculur Imaging
Program at Stantord

Computationally intensive

$$
\lambda_{j}^{m, l}=\frac{\lambda_{j}^{m, l-1}}{\sum_{i=1}^{T} w_{i i} p_{i j} \sum_{k \in S_{i}} p_{i_{k} j} \frac{1}{\sum_{b=1}^{J} p_{i_{k} b} \lambda_{j}^{m, l-1}} \mathrm{~A}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Computing hardware	
Central Processing Unit (CPU)	Graphics Processing Unit (GPU)
(1) Slow growth in clock frequency and instructions-per-clock	© Highly parallel, multi-threaded processor (2) Low cost ($\sim \$ 500$)
(0) Multi-CPU cluster costly	
	Stanford University \quad Sts

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary

\qquad
-With new geometries and special detectors, 1 mm resolution clinical PET is possible
$\cdot 1 \mathrm{~mm}$ resolution enables substantial abilities to visualize and quantify smaller lesions above background signal
-We are currently constructing a dual-panel "spot imager" for cancer that uses 3-D positioning detectors and novel electronics -The 3-D positioning detectors allow us to better position events as well as enable an estimate of the incoming photon direction opening new possibilities for processing PET photon events -GPUs can help to realize practical image reconstruction If successful, we can explore new roles of PET in disease management
\qquad
\qquad
\qquad
\qquad
$\underset{\substack{\text { Morocuar Imaging } \\ \text { Program stantord }}}{ }$
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

