

Stanford University Department of Radiology & BIO-X School of Medicine

Stanford

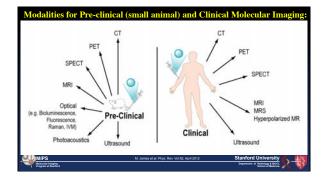
Outline of talk

- •Introduction to Molecular Imaging
- •Brief review of Molecular Imaging modalities and technologies
- •Multi-modality systems
- •Molecular Imaging Contrast Agents

•Summary

Molecular Imaging Modalities and Technologies

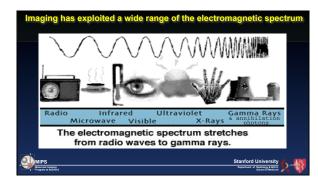
Outline of talk

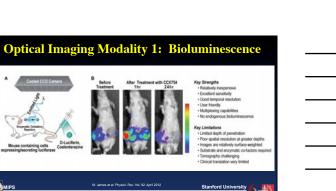

•Introduction to Molecular Imaging •Brief review of Molecular Imaging modalities and

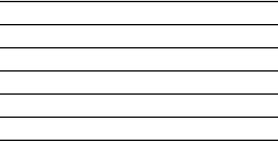
- technologies
- •Multi-modality systems
- •Molecular Imaging Contrast Agents •Summary

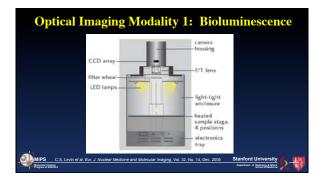
Definition of Molecular Imaging

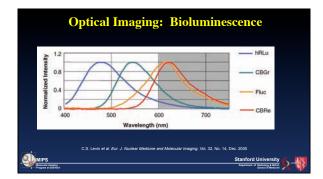
A biomedical imaging technology that enables one to visualize, quantify, and characterize molecular pathways and signatures of disease in living subjects

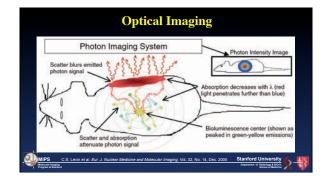

Molecular Imaging: The path from laboratory bench top to clinical bedside

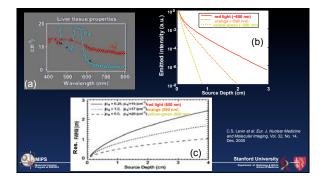


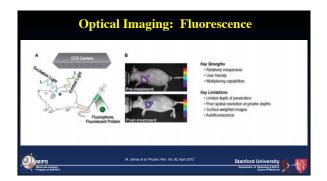


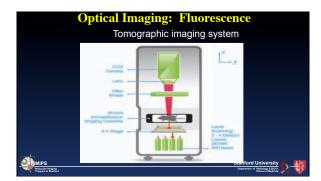

Molecular Imaging Modalities and Technologies Outline of talk •Introduction to Molecular Imaging •Brief review of Molecular Imaging modalities and technologies •Multi-modality systems

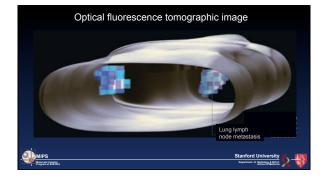

- •Molecular Imaging Contrast Agents
- •Summary

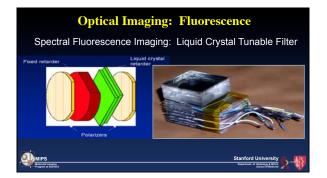


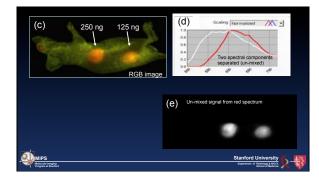


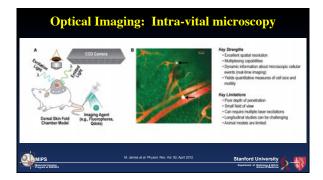


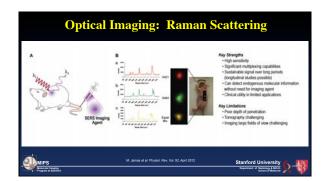


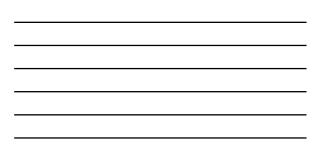

7/15/13

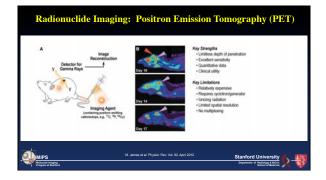


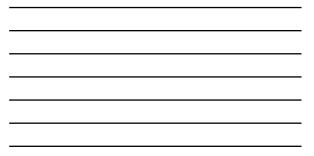


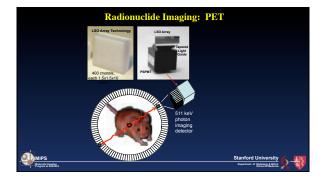


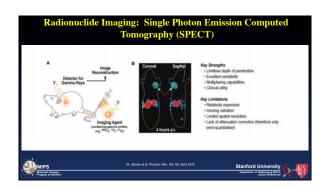


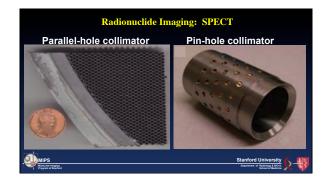


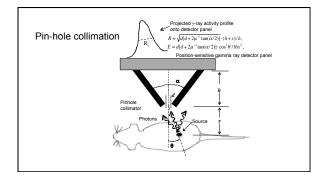


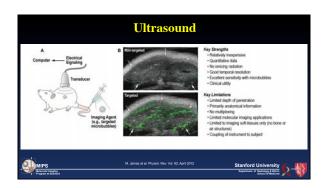




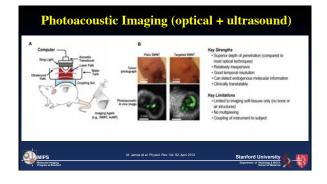


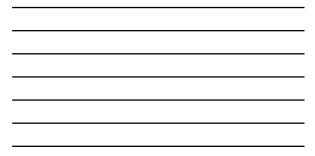


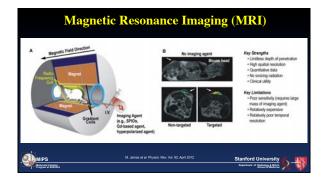




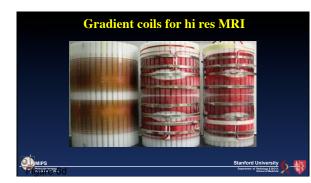


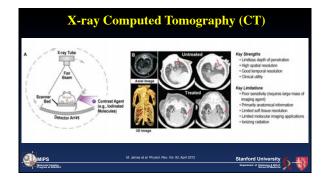




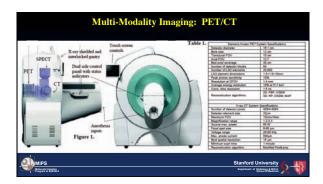




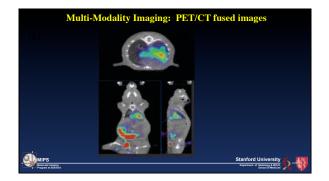


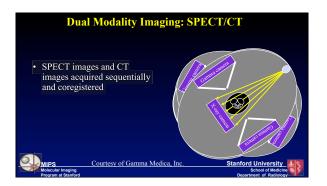


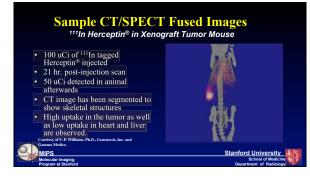
Medality	Temporal Resolution	Spatial Resolution	Depth of Penetration	Sensitivity	Multiplexing Capability	Cest	Safety Profile	Used Clinically
Computed tomography	Meutes	50-200 µm (precinical) 0.5-1 mm (cirrical)	Livities	ND	Could be possible	88	lonizing radiation	Yes
Magnetic resonance Imaging IMRI	Minutes-hours	25-100 µm (precinical) ~1 mm (clinical)	Limitless	10 ⁻⁹ to 10 ⁻⁶ M	No	135	No ionizing redistion	Yes
Postron emission terroscenty (PET)	Seconderminutes	1-2 mm (preclinical) 5-7 mm (clinical)	Linkless	10-11 to 10-12 M	No	\$13	lonizing nedletion	Yes
Single photon emission tomography (SPECT)	Minutes	1-2 mm (precinical) B-10 mm (clinical)	Limitiess	10-10 to 10-11 M	Yes	88	Ionizing rediction	Yes
Ultresound (US)	Seconds-minutes	0.01-0.1 mm for superficial [few mm dapth] applications 1-2 mm for deeper [few om depth] applications		Excellent when microbubbles are used (~10-12 M)	Not yet	8	Good safety profile	Yes
Optical fluorescence imaging	Seconds-minutes	2-3 mm		~10 ⁻⁹ to 10 ⁻¹² M	Yes	8	Good safety profile but depends on fluorophore used and mass needed	Emerging clinical utility (see text)
Optical bioluminescence imaging	Seconds-minutes	3-5 mm	1-2 m	-10 ⁻¹⁸ to 10 ⁻¹⁷ M	Yes	8	Good safety profile	Low potential for clinical translation (see text)
Surface-enhanced reman scattering (SERS) imaging	Minutes-days	mm	-5 mm	10 ⁻¹⁸ to 10 ⁻¹⁶ M	Yes	ND	ND	Limited clinical applications (see text)
Photoecoustic imaging (PAI)	Seconds-minutes	~10µmto 1 mm	6 mm to 5 am	ND	Yes	8	Good safety profile but depends on imaging agent used and mass reacted	Clinically Translatable
Intravital microscopy (VM)	Seconda-days	1-10 µm	~700 µm	~10 ⁻¹⁰ to 10 ⁻¹⁷ M	Yes	\$8	ND	ND

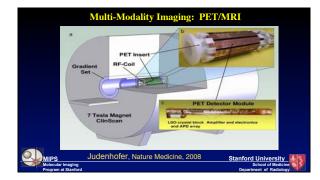


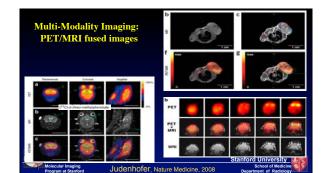
Stanford University Department of Radiology & BIO-X. School of Medicine

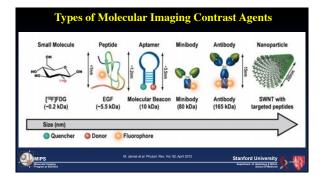

Outline of talk


- Introduction to Molecular Imaging •Brief review of Molecular Imaging modalities and
- technologies •Multi-modality systems
- •Molecular Imaging Contrast Agents •Summary

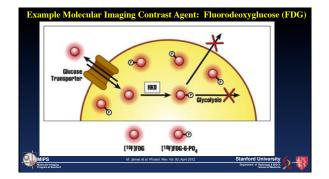

n intaging







Stanford University


Outline of talk

Introduction to Molecular Imaging
Brief review of Molecular Imaging modalities and technologies
Multi-modality systems

- •Molecular Imaging Contrast Agents
- •Summary

¹⁸ F-Fluorodeoxyglucose (FDG)-PET						
	Neur	ological d	isorders			Oncology
* 8 8 ¢	• 0000	0000	0000	000**	000	(S)
MIPS Mips	lee .					

Stanford University Department of Radiology & BIO-X School of Medicine

Outline of talk

- •Introduction to Molecular Imaging •Brief review of Molecular Imaging modalities and technologies •Multi-modality systems
- •Molecular Imaging Contrast Agents •Summary

Summary

•Molecular Imaging is distinguished by being able to measure the fundamental mechanisms of disease on the cellular and molecular level using measurements from outside the body

•Lots of instrumentation research are going on to improve system parameters such as spatial resolution and signal sensitivity •There is no perfect imaging modality---depends on the basic biology question you are

asking

•Multi-modality systems enable multiple parameters to be measured in the same imaging session

 Molecular imaging contrast agents enable amplification of the basic imaging signal. Also an active field of research.

Stanford University

MIPS Witecolar Ingenetics