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HPC Processor Solutions

Common Intel Environment

Portable code, common tools

Xeon®Xeon®Xeon®Xeon®

General Purpose Architecture

Leadership Per Core Performance

FP/core CAGR via AVX

Multi-Core CAGR Intel® Intel® Intel® Intel® Xeon Phi™ Xeon Phi™ Xeon Phi™ Xeon Phi™ 
CoprocessorCoprocessorCoprocessorCoprocessor

Trades a “big” IA core for 
multiple lower performance 
IA cores resulting in higher 
performance for a subset of 
highly parallel applications

EN
General 
purpose 
perf/watt

EP
Max perf/watt 

w/ Higher 
Memory BW / 
freq and QPI 
ideal for HPC

Xeon EX
Additional 
sockets & 

big memory

EP 4S
Additional 
compute 
density

Multi-Core Many-Core
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Each Intel® Xeon Phi™ Coprocessor core is a 

fully functional multi-thread execution unit

>50 in-order cores

• Ring interconnect

64-bit addressing

Scalar unit based on Intel® Pentium®

processor family

• Two pipelines

– Dual issue with scalar instructions

• One-per-clock scalar pipeline throughput

– 4 clock latency from issue to resolution

4 hardware threads per core

• Each thread issues instructions in turn

• Round-robin execution hides scalar unit latency
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Each Intel® Xeon Phi™ Coprocessor core is a 

fully functional multi-thread vector unit

Optimized

• Single and Double precision

All new vector unit

• 512-bit SIMD Instructions – not Intel® SSE, 
MMX™, or Intel® AVX

• 32 512-bit wide vector registers

– Hold 16 singles or 8 doubles per register

Fully-coherent L1 and L2 caches
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Reminder: Vectorization, What is it? 
(Graphical View)

14

for (i=0;i<=MAX;i++)

c[i]=a[i]+b[i];

+

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

Vector
- One Instruction
- Eight Mathematical 

Operations1

1.  Number of operations per instruction varies based on the which SIMD instruction is used and the width of the operands

+

CCCC

BBBB

AAAA

Scalar
- One Instruction
- One Mathematical 

Operation



Copyright© 2013, Intel Corporation. All rights reserved. 
*Other brands and names are the property of their respective owners.

Data Types for                        
Intel® MIC Architecture

16x floats

8x doubles

16x 32-bit integers 

8x  64-bit integers 

now

now

15

Takeaway:  Vectorization is very important
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Individual cores are tied together via 
fully coherent caches into a 
bidirectional ring

16

GDDR

GDDR
GDDR

GDDR

PCIexp

L1 32K I- D-cache per core

3 cycle access
Up to 8 concurrent accesses

L2 512K cache per core

11 cycle best access
Up to 32 concurrent 
accesses

GDDR5 Memory
16 memory channels
- Up to 5.5 Gb/sec

8 GB 300ns access 

Bidirectional ring
115 GB/sec

Distributed Tag 
Directory (DTD)
reduces ring
snoop traffic

PCIe port has its
own ring stop

Takeaway:  Parallelization and data placement 
are important
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Processor Brand 
Name

Codename SKU #
Form Factor,

Thermal

Board
TDP 

(Watts)

Max # of 
Cores

Clock 
Speed 
(GHz)

Peak 
Double 

Precision 
(GFLOP)

GDDR5 
Memory 
Speeds
(GT/s)

Peak
Memory

BW

Memory 
Capacity
(GB)

Total 
Cache
(MB)

Enabled
Turbo

Turbo
Clock 
Speed 
(GHz)

Intel® Xeon 
Phi™ 

Coprocessor 
x100

Knights 
Corner

7120P
PCIe Card, 

Passively Cooled
300 61 1.238 1208 5.5 352 16 30.5 Y 1.333

7120X
PCIe Card, 
No Thermal 
Solution

300 61 1.238 1208 5.5 352 16 30.5 Y 1.333

5120D

PCIe Dense 
Form Factor,
No Thermal 
Solution

245 60 1.053 1011 5.5 352 8 30 N N/A

3120P
PCIe Card, 

Passively Cooled
300 57 1.1 1003 5.0 240 6 28.5 N N/A

3120A
PCIe Card, 

Actively Cooled
300 57 1.1 1003 5.0 240 6 28.5 N N/A

Previously Launched and Disclosed

5110P*
PCIe Card, 

Passively Cooled
225 60 1.053 1011 5.0 320 8 30 N N/A

Intel® Xeon Phi™ Coprocessor x100 Family Reference Table 

*Please refer to our technical documentation for Silicon stepping information
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• Industry-leading 
performance from advanced 
compilers

• Comprehensive libraries

• Parallel programming models

• Insightful analysis tools

More Cores. Wider Vectors. Performance Delivered.
Intel® Parallel Studio XE 2013 and Intel® Cluster Studio XE 2013

Serial 
Performance

Scaling 
Performance 
Efficiently

Multicore Many-core

128 Bits

256 Bits

512 Bits

50+ cores

More Cores

Wider Vectors
Task & Data 

Parallel 
Performance

Distributed 
Performance

19
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Advisor XE
VTune Amplifier XE
Inspector XE
Trace Analyzer

Code Analysis

Comprehensive set of SW tools

Intel Cilk Plus
Threading Building 
Blocks
OpenMP
OpenCL
MPI
Offload/Native/MYO

Programming 
Models

Math Kernel Library
Integrated Performance 
Primitives 
Intel Compilers

Libraries & 
Compilers
Libraries & 
Compilers

20
20
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Preserve Your Development Investment 
Common Tools and Programming Models for Parallelism

Multicore

Many-core

Heterogeneous 
Computing

Intel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk Plus

Intel® TBBIntel® TBBIntel® TBBIntel® TBBIntel® TBBIntel® TBBIntel® TBBIntel® TBB Offload PragmasOffload PragmasOffload PragmasOffload PragmasOffload PragmasOffload PragmasOffload PragmasOffload Pragmas

OpenCL*OpenCL*OpenCL*OpenCL*OpenCL*OpenCL*OpenCL*OpenCL*

OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*

OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*

CoarrayCoarrayCoarrayCoarrayCoarrayCoarrayCoarrayCoarray

Offload DirectivesOffload DirectivesOffload DirectivesOffload DirectivesOffload DirectivesOffload DirectivesOffload DirectivesOffload Directives

Intel® MPIIntel® MPIIntel® MPIIntel® MPIIntel® MPIIntel® MPIIntel® MPIIntel® MPI

Intel® MKLIntel® MKLIntel® MKLIntel® MKLIntel® MKLIntel® MKLIntel® MKLIntel® MKL

C/C++C/C++C/C++C/C++

FortranFortranFortranFortran

Intel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ Compiler

Intel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran Compiler

Develop Using Parallel Models that Support Heterogeneous Computing

21
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Spectrum of Programming & Execution Models

General purpose 
serial and parallel 
computing

Codes with highly-
parallel phases

Highly-parallel 
codes

Codes with 
balanced needs

Main( )
Foo( )

MPI_*()

Foo( )

Main( )
Foo( )

MPI_*()

Main()
Foo( )

MPI_*()

Main( )
Foo( )

MPI_*()

Main( )
Foo( )

MPI_*()
Multicore

Many-core

Multicore  Centric                                                                                ManyMulticore  Centric                                                                                ManyMulticore  Centric                                                                                ManyMulticore  Centric                                                                                Many----core Centriccore Centriccore Centriccore Centric

(Intel® Xeon® processors)                                                                 (Intel® Many Integrated Core co(Intel® Xeon® processors)                                                                 (Intel® Many Integrated Core co(Intel® Xeon® processors)                                                                 (Intel® Many Integrated Core co(Intel® Xeon® processors)                                                                 (Intel® Many Integrated Core co----procesprocesprocesprocessors)sors)sors)sors)

MultiMultiMultiMulti----corecorecorecore----hosted                 Offload                  Symmetric                    Manyhosted                 Offload                  Symmetric                    Manyhosted                 Offload                  Symmetric                    Manyhosted                 Offload                  Symmetric                    Many----corecorecorecore----hosted hosted hosted hosted 

Range of Models to Meet Application NeedsRange of Models to Meet Application NeedsRange of Models to Meet Application NeedsRange of Models to Meet Application Needs

23
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Intel® Xeon Phi™ Coprocessor runs either as an 
accelerator for offloaded host computation

24

Linux* OS

Intel® Xeon Phi™ Coprocessor 
support libraries, tools, and 

drivers

Linux* OS

PCI-E Bus PCI-E Bus

Intel® Xeon Phi™ 
Coprocessor communication 

and application-launch 
support

Intel® Xeon Phi™ Coprocessor Host Processor

System-level code System-level code

User-level codeUser-level code

Offload libraries, user-
level driver, user-

accessible APIs and 
libraries

User code

Host-side offload application

User code

Offload libraries, 
user-accessible 

APIs and 
libraries

Target-side offload 
applicationAdvantages

• More memory available
• Better file access
• Host better on serial code
• Better uses resources
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ssh or telnet
connection to 
coprocessor 
IP address

Virtual terminal session

Or Intel® Xeon Phi™ Coprocessor runs as a 
native or MPI* compute node via IP or OFED

25

Linux* OS Linux* OS

PCI-E Bus PCI-E Bus

Intel® Xeon Phi™ 
Coprocessor communication 

and application-launch 
support

Intel® Xeon Phi™ Coprocessor Host Processor

System-level code System-level code

User-level codeUser-level code

Target-side “native” 
application

User code

Standard OS 
libraries plus any 
3rd-party or Intel 

libraries

Intel® Xeon Phi™ Coprocessor 
Architecture support libraries, 

tools, and drivers

IB fabric

Advantages
• Simpler model

• No directives
• Easier port

• Good kernel test

Use if
• Not serial 
• Modest memory
• Complex code
• No hot spots
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The Intel® Manycore Platform Software Stack 
(Intel® MPSS) provides Linux* on the coprocessor

26

Authenticated users can treat it like another node

Intel MPSS supplies a virtual FS and native execution

Add –mmic to compiles to create native programs

ssh mic0 top
Mem: 298016K used, 7578640K free, 0K shrd, 0K buff, 100688K cached

CPU:  0.0% usr 0.3% sys  0.0% nic 99.6% idle  0.0% io 0.0% irq 0.0% sirq

Load average: 1.00 1.04 1.01 1/2234 7265

PID  PPID USER     STAT   VSZ %MEM CPU %CPU COMMAND

7265  7264 fdkew R     7060  0.0  14  0.3 top

43     2 root     SW       0  0.0  13  0.0 [ksoftirqd/13]

5748     1 root     S     119m  1.5 226  0.0 ./sep_mic_server3.8

5670     1 micuser S    97872  1.2   0  0.0 /bin/coi_daemon --coiuser=micuser

7261  5667 root     S    25744  0.3   6  0.0 sshd: fdkew [priv]

7263  7261 fdkew S    25744  0.3 241  0.0 sshd: fdkew@notty

5667     1 root     S    21084  0.2   5  0.0 /sbin/sshd

5757     1 root     S     6940  0.0  18  0.0 /sbin/getty -L -l /bin/noauth 1152

1     0 root     S     6936  0.0  10  0.0 init

7264  7263 fdkew S     6936  0.0   6  0.0 sh -c top

sudo scp /opt/intel/composerxe/lib/mic/libiomp5.so root@mic0:/lib64

scp a.out mic0:/tmp

ssh mic0 /tmp/a.out my-args

icc –O3 –g –mmic –o nativeMIC myNativeProgram.c
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Alternately, use the offload capabilities of 

Intel® Composer XE to access coprocessor

Offload directives in source code trigger Intel Composer to 
compile objects for both host and coprocessor

When the program is executed and a coprocessor is available, 
the offload code will run on that target

• Required data can be transferred explicitly for each offload

• Or use Virtual Shared Memory (_Cilk_shared) to match virtual 
addresses between host and target coprocessor

Offload blocks initiate coprocessor computation and can be 
synchronous or asynchronous

27

#pragma offload target(mic) inout(A:length(2000)) C/C++
!DIR$ OFFLOAD TARGET(MIC) INOUT(A: LENGTH(2000)) Fortran 

#pragma offload_transfer target(mic) in(a: length(2000)) signal(a)
!DIR$ OFFLOAD_TRANSFER TARGET(MIC) IN(A: LENGTH(2000)) SIGNAL(A)
_Cilk_spawn _Cilk_offload asynch-func()
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Offload directives are independent of 
function boundaries

28

Host
Intel® Xeon® 
processor 

Target
Intel® Xeon Xeon
Phi™ coprocessor

Execution
• If at first offload the 

target is available, 
the target program 
is loaded

• At each offload if the 
target is available, 
statement is run on 
target, else it is run 
on the host

• At program 
termination the 
target program is 
unloaded 

f() {

#pragma offload

a = b + g();

h();

}

f_part1() {

a = b + g();

}

__attribute__ ((target(mic)))

g() {

...

}

h() {

...

}

__attribute__ ((target(mic)))

g() {

...

}



Copyright© 2013, Intel Corporation. All rights reserved. 
*Other brands and names are the property of their respective owners.

Example: Compiler Assisted Offload

• Offload section of code to the coprocessor.

• Offload any function call to the coprocessor.

29

#pragma offload target(mic) \
in(transa, transb, N, alpha, beta) \
in(A:length(matrix_elements)) \
in(B:length(matrix_elements)) \
in(C:length(matrix_elements)) \
out(C:length(matrix_elements) alloc_if(0))
{

sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,
&beta, C, &N);

}

float pi = 0.0f;
#pragma offload target(mic)
#pragma omp parallel for reduction(+:pi)
for (i=0; i<count; i++) {

float t = (float)((i+0.5f)/count);
pi += 4.0f/(1.0f+t*t);

}
pi /= count;
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Example: Compiler Assisted Offload

• An example in Fortran:

30

!DEC$ ATTRIBUTES OFFLOAD : TARGET( MIC ) :: SGEMM 
!DEC$ OMP OFFLOAD TARGET( MIC ) & 
!DEC$ IN( TRANSA, TRANSB, M, N, K, ALPHA, BETA, LDA, LDB, LDC ), & 
!DEC$ IN( A: LENGTH( NCOLA * LDA )), & 
!DEC$ IN( B: LENGTH( NCOLB * LDB )), & 
!DEC$ INOUT( C: LENGTH( N * LDC )) 
CALL SGEMM( TRANSA, TRANSB, M, N, K, ALPHA, &

A, LDA, B, LDB BETA, C, LDC ) 
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Example – share work between 
coprocessor and host using OpenMP*

omp_set_nested(1);

#pragma omp parallel private(ip)
{

#pragma omp sections
{

#pragma omp section
/*  use pointer to copy back only part of potential array, 

to avoid overwriting host */

#pragma offload target(mic) in(xp) in(yp) in(zp) out(ppot:length(np1))
#pragma omp parallel for private(ip)

for (i=0;i<np1;i++)  {

ppot[i] = threed_int(x0,xn,y0,yn,z0,zn,nx,ny,nz,xp[i],yp[i],zp[i]);

}

#pragma omp section
#pragma omp parallel for private(ip)

for (i=0;i<np2;i++)  {

pot[i+np1] =

threed_int(x0,xn,y0,yn,z0,zn,nx,ny,nz,xp[i+np1],yp[i+np1],zp[i+np1]);

}

}

}

31

Top level, runs on host
Runs on coprocessor
Runs on host
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Pragmas and directives mark data and code to 
be offloaded and executed

32

C/C++ Syntax

Offload pragma #pragma offload <clauses> <statement>

Allow next statement to execute on coprocessor or host CPU

Variable/function 
offload properties

__attribute__((target(mic)))

Compile function for, or allocate variable on, both host CPU 
and coprocessor

Entire blocks of 
data/code defs

#pragma offload_attribute(push, target(mic))

#pragma offload_attribute(pop)

Mark entire files or large blocks of code to compile for both 
host CPU and coprocessorFortran Syntax

Offload directive !dir$ omp offload <clauses> <statement>
Execute OpenMP* parallel block on coprocessor

!dir$ offload <clauses> <statement>
Execute next statement or function on coproc.

Variable/function 
offload properties

!dir$ attributes offload:<mic> :: <ret-name> OR 
<var1,var2,…>

Compile function or variable for CPU and coprocessor

Entire code blocks !dir$ offload begin <clauses>
!dir$ end offload
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Options on offloads can control data copying 
and manage coprocessor dynamic allocation

33

Clauses Syntax Semantics

Multiple coprocessors target(mic[:unit] ) Select specific coprocessors

Conditional offload if (condition) / manadatory Select coprocessor or host compute

Inputs in(var-list modifiersopt) Copy from host to coprocessor

Outputs out(var-list modifiersopt) Copy from coprocessor to host

Inputs & outputs inout(var-list modifiersopt) Copy host to coprocessor and back 
when offload completes

Non-copied data nocopy(var-list modifiersopt) Data is local to target

Modifiers

Specify copy length length(N) Copy N elements of pointer’s type 

Coprocessor memory 
allocation

alloc_if ( bool ) Allocate coprocessor space on this 
offload (default: TRUE)

Coprocessor memory 
release

free_if ( bool ) Free coprocessor space at the end of 
this offload (default: TRUE)

Control target data 
alignment

align ( N bytes ) Specify minimum memory alignment 
on coprocessor

Array partial allocation & 
variable relocation

alloc ( array-slice )
into ( var-expr )

Enables partial array allocation and 
data copy into other vars & ranges
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To handle more complex data structures on the 

coprocessor, use Virtual Shared Memory

An identical range of virtual addresses is reserved on both host an 
coprocessor: changes are shared at offload points, allowing:

• Seamless sharing of complex data structures, including linked lists

• Elimination of manual data marshaling and shared array management

• Freer use of new C++ features and standard classes

34

Host
VM

coproc
VM

Offload code

C/C++ executable

Host coprocessor

Same virtual 
address range
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Example: Virtual Shared Memory

• Shared between host and Xeon Phi

35

// Shared variable declaration
_Cilk_shared T in1[SIZE];
_Cilk_shared T in2[SIZE];
_Cilk_shared T res[SIZE];

_Cilk_shared void compute_sum()
{

int i;
for (i=0; i<SIZE; i++) {

res[i] = in1[i] + in2[i];
}

}

(...)

// Call compute sum on Target
_Cilk_offload compute_sum();
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Virtual Shared Memory uses special allocation 

to manage data sharing at offload boundaries

Declare virtual shared data using _Cilk_shared allocation specifier

Allocate virtual dynamic shared data using these special functions:

Shared data copying occurs automatically around offload sections

• Memory is only synchronized on entry to or exit from an offload call

• Only modified data blocks are transferred between host and coprocessor

Allows transfer of C++ objects

• Pointers are transportable when they point to “shared” data addresses

Well-known methods can be used to synchronize access to shared data 
and prevent data races within offloaded code

• E.g., locks, critical sections, etc.

This model is integrated with the Intel® Cilk™ Plus parallel extensions

36

Note:  Not supported on Fortran - available for C/C++ only

_Offload_shared_malloc(), _Offload_shared_aligned_malloc(),
_Offload_shared_free(), _Offload_shared_aligned_free()



Copyright© 2013, Intel Corporation. All rights reserved. 
*Other brands and names are the property of their respective owners.

Data sharing between host and coprocessor can 
be enabled using this Intel® Cilk™ Plus syntax

37

What Syntax

Function int _Cilk_shared f(int x){ return x+1; }

Code emitted for host and target; may be called from either side

Global _Cilk_shared int x = 0;

Datum is visible on both sides

File/Function 
static

static _Cilk_shared int x;

Datum visible on both sides, only to code within the file/function

Class class _Cilk_shared x {…};

Class methods, members and operators available on both sides

Pointer to 
shared data

int _Cilk_shared *p;

p is local (not shared), can point to shared data

A shared 
pointer

int *_Cilk_shared p;

p is shared; should only point at shared data

Entire blocks 
of code

#pragma offload_attribute( push, _Cilk_shared)

#pragma offload_attribute(pop)

Mark entire files or blocks of code _Cilk_shared using this pragma
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Intel® Cilk™ Plus syntax can also specify the 

offloading of computation to the coprocessor

38

Feature Example

Offloading a 
function call

x = _Cilk_offload func(y);
func executes on coprocessor if possible

x = _Cilk_offload_to (card_num) func(y);
func must execute on specified coprocessor or an error occurs

Offloading 
asynchronously

x = _Cilk_spawn _Cilk_offload func(y);
func executes on coprocessor; continuation available for stealing

Offloading a 
parallel for-
loop

_Cilk_offload _Cilk_for(i=0; i<N; i++){
a[i] = b[i] + c[i];

}

Loop executes in parallel on coprocessor. 
The loop is implicitly “un-inlined” as a function call.
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Options for Thread Parallelism

Intel® Math Kernel Library

OpenMP*

Intel® Threading Building Blocks

Intel® Cilk™ Plus

OpenCL*

Pthreads* and other threading libraries Programmer control

Ease of use / code 

maintainability

Choice of unified programming to target Intel® Xeon® and Intel® Xeon Phi™ Architecture!

40
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OpenMP* on the Coprocessor

• The basics work just like on the host CPU

• For both native and offload models

• Need to specify -openmp

• There are 4 hardware thread contexts per core

• Need at least 2 x ncore threads for good performance

– For all except the most memory-bound workloads

– Often, 3x or 4x (number of available cores) is best

– Very different from hyperthreading on the host!

– -opt-threads-per-core=n advises compiler how many 
threads to optimize for

• If you don’t saturate all available threads, be sure to 
set KMP_AFFINITY  to control thread distribution

42
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OpenMP defaults

• OMP_NUM_THREADS  defaults to

• 1 x ncore for host (or 2x if hyperthreading enabled)

• 4 x ncore for native coprocessor applications

• 4 x (ncore-1) for offload applications

– one core is reserved for offload daemons and OS

• Defaults may be changed via environment variables 
or via API calls on either the host or the coprocessor
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Target OpenMP environment (offload)

Use target-specific APIs to set for coprocessor target only, e.g. 

omp_set_num_threads_target()      (called from host)

omp_set_nested_target()                 etc

• Protect with #ifdef  __INTEL_OFFLOAD, undefined with –no-offload

• Fortran:   USE MIC_LIB  and  OMP_LIB    C:  #include <offload.h>

Or define MIC – specific versions of env vars using

MIC_ENV_PREFIX=MIC (no underscore)

• Values on MIC no longer default to values on host

• Set values specific to MIC using

export MIC_OMP_NUM_THREADS=120          (all cards)

export MIC_2_OMP_NUM_THREADS=180     for card #2,   etc

export MIC_3_ENV=“OMP_NUM_THREADS=240|KMP_AFFINITY=balanced”

44
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Stack Sizes for Coprocessor

For the main thread, (thread 0), default stack limit is 12 MB

• In offloaded functions, stack is used for local or automatic arrays 
and compiler temporaries

• To increase limit,     export MIC_STACKSIZE  (e.g. =100M    )

– default unit is K (Kbytes)

• For native apps,  use ulimit –s    (default units are Kbytes)

For worker threads:   default stack size is 4 MB

• Space only needed for those local variables or automatic arrays or 
compiler temporaries for which each thread has a private copy

• To increase limit, export OMP_STACKSIZE=10M      (or as needed)

• Or use dynamic allocation  (may be less efficient)

Typical error message if stack limits exceeded:

offload error: process on the device 0 was terminated by SEGFAULT

45
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Thread Affinity Interface

Allows OpenMP threads to be bound to physical or logical cores

• export environment variable KMP_AFFINITY=

– physical use all physical cores before assigning threads to other 
logical cores (other hardware thread contexts)

– compact assign threads to consecutive h/w contexts on same 
physical core   (eg to benefit from shared cache)

– scatter assign consecutive threads to different physical cores 
(eg to maximize access to memory)

– balanced blend of compact & scatter                          
(currently only available for Intel® MIC Architecture)

• Helps optimize access to memory or cache

• Particularly important if all available h/w threads not used

– else some physical cores may be idle while others run multiple 
threads

• See compiler documentation for (much) more detail
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Intel® Threading Building Blocks

Widely used C++ template library for parallelism

С++ Library for parallel programming

• Takes care of managing multitasking

Runtime library

• Scalability to available number of threads

Cross-platform

• Windows, Linux, Mac OS* and others

http://threadingbuildingblocks.org

48



Copyright© 2013, Intel Corporation. All rights reserved. 
*Other brands and names are the property of their respective owners.

Intel® Threading Building Blocks

49

Concurrent Containers

Common idioms for concurrent 
access

- a scalable alternative serial 
container with a lock around it

Miscellaneous

Thread-safe timers

Generic Parallel Algorithms

Efficient scalable way to exploit the 
power of multi-core without having 

to start from scratch

Task scheduler

The engine that empowers parallel

algorithms that employs task-
stealing to maximize concurrency

Synchronization Primitives

User-level and OS wrappers for 

mutual exclusion, ranging from atomic 
operations to several flavors of mutexes

and condition variables

Memory Allocation

Per-thread scalable memory manager and false-sharing free allocators

Threads

OS API wrappers

Thread Local Storage

Scalable implementation of thread-local data 
that supports infinite number of TLS

TBB Flow Graph
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parallel_for usage example
#include <tbb/blocked_range.h>

#include <tbb/parallel_for.h>

using namespace tbb;

class ChangeArray{

int* array;

public:

ChangeArray(int* a): array(a) {}

void operator()(const blocked_range<int>& r) const {

for (int i = r.begin(); i != r.end(); i++) {

Foo (array[i]);

}

}

};

int main (){

int a[n];

// initialize array here…

parallel_for (blocked_range<int>(0, n), ChangeArray(a));

return 0;

}

ChangeArray class defines

a for-loop body for parallel_for

blocked_range – TBB template

representing 1D iteration space

As usual with C++ function

objects the main work 

is done inside operator()

A call to a template function 

parallel_for<Range, Body>:

with arguments 

Range � blocked_range

Body � ChangeArray
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MKL Usage Models on Intel® Xeon Phi™ 

Coprocessor

53

• Automatic Offload
– No code changes required

– Automatically uses both host and target

– Transparent data transfer and execution management

• Compiler Assisted Offload
– Explicit controls of data transfer and remote execution using compiler 

offload pragmas/directives

– Can be used together with Automatic Offload

• Native Execution 
– Uses the coprocessors as independent nodes

– Input data is copied to targets in advance
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MKL Execution Models

54

Multicore Hosted

General purpose serial 
and parallel computing

Offload

Codes with highly-

parallel phases

Many Core Hosted

Highly-parallel codes

Symmetric

Codes with balanced 

needs

Multicore
(Intel® Xeon®)

Many-core
(Intel® Xeon Phi™)

Multicore Centric Many-Core Centric
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Work Division Control in MKL Automatic Offload

55

Examples Notes

mkl_mic_set_Workdivision(
MKL_TARGET_MIC, 0, 0.5)

Offload 50% of computation only to the 1st

card. 

Examples Notes

MKL_MIC_0_WORKDIVISION=0.5 Offload 50% of computation only to the 1st

card. 
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How to Use MKL with Compiler 
Assisted Offload
• The same way you would offload any function call 

to the coprocessor.

• An example in C:

56

#pragma offload target(mic) \
in(transa, transb, N, alpha, beta) \
in(A:length(matrix_elements)) \
in(B:length(matrix_elements)) \
in(C:length(matrix_elements)) \
out(C:length(matrix_elements) alloc_if(0))
{

sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,
&beta, C, &N);

}
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Intel® Xeon Phi™ Coprocessor Becomes 
a Network Node

*

Intel® Xeon® Processor Intel® Xeon Phi™ Coprocessor

Virtual Network 
Connection

Intel® Xeon® Processor Intel® Xeon Phi™ Coprocessor

Virtual Network 
Connection

… …

Intel® Xeon Phi™ Architecture + Linux enables IP addressability
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Coprocessor only Programming Model

MPI ranks on Intel® Xeon 
Phi™ coprocessor (only)

All messages into/out of 
the coprocessors

Intel® Cilk™ Plus, 
OpenMP*, Intel®

Threading Building Blocks, 
Pthreads used directly 
within MPI processes

CPUCPU

CPUCPU

Data

MPI

Data

N
e
tw

o
rk

Homogenous 
network of many-
core CPUs

Build Intel Xeon Phi coprocessor binary using the 
Intel® compiler

Upload the binary to the Intel Xeon Phi coprocessor

Run instances of the MPI application on Intel Xeon Phi 
coprocessor nodes
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Symmetric Programming Model

MPI ranks on Intel® Xeon 
Phi™ Architecture and host 
CPUs

Messages to/from any core

Intel® Cilk™ Plus, OpenMP*, 
Intel® Threading Building 
Blocks, Pthreads* used 
directly within MPI 
processes

Heterogeneous  
network of 
homogeneous CPUs

CPUCPU

CPUCPU
C

Data

MPI

Data

N
e
tw

o
rk

Data

Data

Build binaries by using the resp. compilers targeting Intel 
64 and Intel Xeon Phi Architecture

Upload the binary to the Intel Xeon Phi coprocessor

Run instances of the MPI application on different mixed 
nodes
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MPI+Offload Programming Model 

MPI ranks on Intel® 

Xeon® processors (only)

All messages into/out of 
host CPUs

Offload models used to 
accelerate MPI ranks

Intel® Cilk™ Plus, 
OpenMP*, Intel®

Threading Building 
Blocks, Pthreads* within 
Intel® Xeon Phi™ 
coprocessor

Homogenous network 
of heterogeneous 
nodes

CPUCPU

CPUCPU

MPI

Offload

Offload

N
e
tw

o
rk

Data

Data

Build Intel® 64 executable with included offload by using 
the Intel compiler

Run instances of the MPI application on the host, offloading 
code onto coprocessor

Advantages of more cores and wider SIMD for certain 
applications
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Compare the event 
timelines of two 
communication profiles

Blue = computation
Red = communication

Chart showing how the 
MPI processes interact

Intel® Trace Analyzer and Collector
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Intel® Trace Analyzer and Collector Overview

Intel® Trace Analyzer and Collector 
helps the developer:

• Visualize and understand parallel application 
behavior

• Evaluate profiling statistics and load 
balancing

• Identify communication hotspots

Features

• Event-based approach

• Low overhead

• Excellent scalability

• Comparison of multiple profiles

• Powerful aggregation and filtering functions

• Fail-safe MPI tracing

• Provides API to instrument user code

• MPI correctness checking

• Idealizer
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Full tracing functionality on Intel® Xeon Phi™ 
coprocessor
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Collecting Hardware Performance 
Data

Hardware counters and events

• 2 counters in core, most are thread specific

• 4 outside the core (uncore) that get no thread or core details

• See PMU documentation for a full list of events

Collection

• Invoke from Intel® VTune™ Amplifier XE

• If collecting more than 2 core events, select multi-run for more 
precise results or the default multiplexed collection, all in one run

• Uncore events are limited to 4 at a time in a single run

• Uncore event sampling needs a source of PMU interrupts, e.g. 
programming cores to CPU_CLK_UNHALTED

Output files

• Intel VTune Amplifier XE performance database
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Intel® VTune™ Amplifier XE offers a rich GUI 

Menu and 
Tool bars

Analysis 
Type

Viewpoint 
currently being 

used

Tabs within 
each result
Tabs within 
each result

Grid area

Stack Pane

Timeline area

Filter area

Current 
grouping
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Double Click Function 
to View Source

Intel® VTune™ Amplifier XE on Intel® Xeon 

Phi™ coprocessors 

Adjust Data Grouping

… (Partial list shown)

Filter by Module &
Other Controls

Filter
by Timeline Selection 
(or by Grid Selection)

No Call Stacks Yet
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Intel® VTune™ Amplifier XE displays event data 
at function, source & assembly levels 

Time on Source / Asm

Quickly scroll to hot spots.

Scroll Bar “Heat Map” is an

overview of hot spots

Click jump to scroll Asm

Quick Asm navigation: 

Select source to highlight Asm

Right click for instruction 

reference manual

Intel® VTune™ Amplifier XE 2013
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Conclusions: Intel® Xeon Phi™ Coprocessor 

supports a variety of programming models

The familiar Intel development environment is available:

• Intel® Composer: C, C++ and Fortran Compilers

• OpenMP*

• Intel® MPI Library support for the Intel® Xeon Phi™ Coprocessor 

– Use as an MPI node via TCP/IP or OFED

• Parallel Programming Models

– Intel® Threading Building Blocks (Intel® TBB)

– Intel® Cilk™ Plus

• Intel support for gdb on Intel Xeon Phi Coprocessor 

• Intel Performance Libraries (e.g. Intel Math Kernel Library)

– Three versions:  host-only, coprocessor-only, heterogeneous 

• Intel® VTune™ Amplifier XE for performance analysis

• Standard runtime libraries, including pthreads*
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One Stop Shop for:

Tools & Software Downloads

Getting Started Development Guides

Video Workshops, Tutorials, & Events

Code Samples & Case Studies  

Articles, Forums, & Blogs

Associated Product Links

http://software.intel.com/mic-developer

Intel® Xeon Phi™ Coprocessor Developer site:
http://software.intel.com/mic-developer
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Resources

http://software.intel.com/mic-developer

• Developer’s Quick Start Guide

• Programming Overview

• New User Forum  at  

http://software.intel.com/en-us/forums/intel-many-integrated-core

http://software.intel.com/en-us/articles/programming-and-
compiling-for-intel-many-integrated-core-architecture

http://software.intel.com/en-us/articles/advanced-optimizations-
for-intel-mic-architecture

Intel® Composer XE 2013 for Linux* User and Reference Guides

Intel Premier Support         https://premier.intel.com
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Offloaded data have some restrictions and 

directives to channel their transfer

Offload data are limited to scalars, arrays, and “bitwise-
copyable” structs (C++) or derived types (Fortran)

• No structures with embedded pointers (or allocatable arrays)

• No C++ classes beyond the very simplest

• Fortran 2003 object constructs also off limits, mostly

• Data exclusive to the coprocessor has no restrictions

Offload data includes all scalars & named arrays in lexical 
scope, which are copied both directions automatically

• IN, OUT, INOUT, NOCOPY are used to limit/channel copying

• Data not automatically transferred:

– Local buffers referenced by local pointers

– Global variables in functions called from the offloaded code

• Use IN/OUT/INOUT to specify these copies – use LENGTH
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alloc_if() and free_if() provide a means to 

manage coprocessor memory allocs

Both default to true: normally coprocessor variables are 
created/destroyed with each offload

A common convention is to use these macros:

To allocate a variable and keep it for the next offload

To reuse that variable and keep it again:

To reuse one more time, then discard:

78

#define ALLOC alloc_if(1)
#define FREE free_if(1)
#define RETAIN free_if(0)
#define REUSE alloc_if(0)

#pragma offload target(mic)  in(p:length(n) ALLOC RETAIN)

#pragma offload target(mic)  in(p:length(n) REUSE RETAIN)

#pragma offload target(mic)  in(p:length(n) REUSE FREE)


