intel.

{ in |:E|' Insidsa

Xeon Phi

An Introduction to the
Intel® Xeon Phi™ Coprocessor

INFIERI-2013 - July 2013

Leo Borges (leonardo.borges@intel.com)
Intel Software & Services Group

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Introduction

Intel in High-Performance Computing

Dedicated, 1477 Large Scale
; Clusters by
for Test & cale -
Optimization Research [

Tera-
Renowned

Applications
Expertise

Defined

Broad Software HPC inlel'

Tools ..
dus Portfolio Application
LAPRET L
- Platform Oustar
Reay

Many
Integrated
Core

Manufacturing Leading
Process Performance,
fiTechnologies Energy Efficient

A long term commit

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

HPC Processor Solutions

Multi-Core Many-Core

Xeon®

(inte}insice General Purpose Architecture
xeﬁ ' Leadership Per Core Performance

=

e —

| Xeon Phi

FP/core CAGR via AVX

Multi-Core CAGR Intel® Xeon Phi™

Coprocessor

Trades a “big” |A core for
multiple lower performance
|A cores resulting in higher
performance for a subset of
highly parallel applications

EN EP EP 4S Xeon EX
General Max perf/watt Additional Additional
purpose w/ Higher compute sockets &

Memory BW / nsit big memor
perf/watt freq and QPI density g Y

ideal for HPC

Common Intel Environment
Cluster Portable code, common tools

Copyright© 2013, Intel Corporation. All rights reserved.
brands and names are the property of their respective owners.

*Other

nghly Parallel Applications

Markets, Tvpes, & Hardware
gy &oil Digital :nnt-nt Climate modellng & . 'inancial Medical imaging Computer Aided
exploration creation weather prediction analyses, trading and biophysics Design
= “ . & Manufacturing
Parallel Application Types Hardware Options for
[b Parallel Application Types
Fine NS S s
g Grain .
, ST
! .
\/ I
1
I' Coarse
SN Grain |
==
\
\
\
C/C++ 1 .
Fortran \ Embarrassingly
\ Parallel
>
B communication
L I Compute Process)
(N\
Highly Parallel Compute Kernels -
Black-Scholes ~ Sparse/Dense Matrix Mult ., \ Intel® MIC Architecture)

FFTs Vector Math LU Factorization

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

High-level overview of the Intel® Xeon Phi™ platform:
Hardware

Each Intel® Xeon Phi™ Coprocessor core is a
fully functional multi-thread execution unit

>50 in-order cores
Instruction Decode * Ring interconnect

64-bit addressing

Scalar unit based on Intel® Pentium®
processor family

Scalar Vector e TWO pipe“nes
Registers Registers

- Dual issue with scalar instructions

312,(L1 I_cach£ * One-per-clock scalar pipeline throughput

32K L1 D-cache - 4 clock latency from issue to resolution

4 hardware threads per core
« Each thread issues instructions in turn
1 « Round-robin execution hides scalar unit latency

512K L2 Cache

Copyri ght© 2013, I t | Corporation. All ri ght
*Other brands name e the prope rty of the

Each Intel® Xeon Phi™ Coprocessor core is a
fully functional multi-thread execution unit

@in-order co@

Instruction Decode * Ring interconnect

64-bit addressing

Scalar unit based on Intel® Pentium®
1 processor family

RSC?'tar RVe_cttor « Two pipelines
egisters egisters
g - Dual issue with scalar instructions

37K L1 I-cache « One-per-clock scalar plpellne throug.hput
32K L1 D-cache - 4 clock latency from issue to resolution

4 hardware threads per core
« Each thread issues instructions in turn
« Round-robin execution hides scalar unit latency

512K L2 Cache

Copyri ght© 2013, I t I Corporation. All r ght

*Other brands name e the prope rty of the

Each Intel® Xeon Phi™ Coprocessor core is a
fully functional multi-thread execution unit

>50 in-order cores
Instruction Decode * Ring interconnect

processor family

RSc?ltar « Two pipelines
egisters egisters
- Dual issue with scalar instructions

312,(L1 I-cache * One-per-clock scalar pipeline throughput

32K L1 D-cache - 4 clock latency from issue to resolution

@gﬂ” Vector 64-bit addressing
Unit
] Scalar unit based on Intel® PentiuD

512K L2 Cache 4 hardware threads per core
« Each thread issues instructions in turn
1 « Round-robin execution hides scalar unit latency

Copyri ght© 2013, I t | Corporation. All ri ght
*Other brands name e the prope rty of the

Each Intel® Xeon Phi™ Coprocessor core is a
fully functional multi-thread execution unit

>50 in-order cores
Instruction Decode * Ring interconnect

: M vector 64-bit addressing

r Scalar unit based on Intel® Pentium®
1 processor family

RSc?ltar « Two pipelines
egisters egisters
- Dual issue with scalar instructions

312,(L1 I-cache * One-per-clock scalar pipeline throughput

32K L1 D-cache - 4 clock latency from issue to resolution

512K L2 Cache 4 hardware threads per core
« Each thread issues instructions in turn
1 « Round-robin execution hides scalar unit latency

Copyri ght© 2013, I t | Corporation. All ri ght
*Other brands name e the prope rty of the

Each Intel® Xeon Phi™ Coprocessor core is a
fully functional multi-thread execution unit

>50 in-order cores
Instruction Decode * Ring interconnect

|

64-bit addressing

Scalar unit based on Intel® Pentium®
processor family

RSC_altar RVe_cttor « Two pipelines
egisters egisters
- Dual issue with scalar instructions

312,(L1 I_cach£ * One-per-clock scalar pipeline throughput

32K L1 D-cache - 4 clock latency from issue to resolution

4 hardware threads per core
« Each thread issues instructions in turn
1 « Round-robin execution hides scalar unit latency

512K L2 Cache

Copyri ght© 2013, I t | Corporation. All ri ght
*Other brands name e the prope rty of the

Each Intel® Xeon Phi™ Coprocessor core is a
fully functional multi-thread vector unit

Instruction Decode

| |

=

Scalar Vector
Registers Registers

{ !

32K L1 I-cache
32K L1 D-cache

512K L2 Cache

!

Optimized
» Single and Double precision

@I new vector unit)

« 512-bit SIMD Instructions - not Intel® SSE,
MMX™, or Intel® AVX

« 32 512-bit wide vector registers
_- Hold 16 singles or 8 doubles per register -/

Fully-coherent L1 and L2 caches

Reminder: Vectorization, What is it?
(Graphical View)

[——

Scalar
- One Instruction
- One Mathematical
Operation

\

for (i=0;i<=MAX;i++)
cli]l=ali]+b[1i];

(a7 ati=6] at+5]] R

+ Vector

A— ___- One Instruction
-b[i+6]rb[i+5] - Eight Mathematical
Operations!
A
(7] w61 [a1 | _

1. Number of operations per instruction varies based on the which SIMD instruction is used and the width of the operands

Copyright© 2013, Intel Corporation. All rights reserved.
rands and nam

*Other brand: es are the property of their respective owners.

Data Types for
Intel® MIC Architecture

NOW

ifgfEEnEnN 16x floats

8x doubles

., |INESESESESESEEEE 16x 32-bit integers
0 [

B 8x 64-bit integers

Takeaway: Vectorization is very important

Individual cores are tied together via
fully coherent caches into a
bidirectional ring

L1 32K I- D-cache per core

. - . . 3 cycle access
Bidirectional ring

115 GB/sec
Distributed Tag
Directory (DTD)
reduces ring
snoop traffic
PCIe port has its
own ring stop

GDDR5 Memory
16 memory channels x A L2 512K cache per core

- Up to 5.5 Gb/sec 11 cycle best access
8 GB 300ns access Up to 32 concurrent

accesses

Takeaway: Paralleli and data placement
are ant

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Xeon Phi™ Coprocessor x100 Family Reference Table

Peak GDDR5 Turbo
Board Clock Peak Memory Total

Processor Brand Form Factor, Max # of Double Memory A Enabled Clock
Name Codename SKULZ Thermal uil Cores Speed Precision Speeds gemotyj Capacity Cache Turbo Speed
(Watts) (GHz) (GFLOP) (GT/s) BW (GB) (MB) (GHz)

PCIe Card,
7120P passively Cooled 300 61 1.238 1208 5.5 352 16 30.5 Y 1.333

PCIe Card,
7120X No Thermal 300 61 1.238 1208 5.5 352 16 30.5 Y 1.333

Solution
PCIe Dense
Form Factor,
5120D No Thermal 245 60 1.053 1011 5.5 352 8 30 N N/A
Solution
e oaies | 31208 | _Pcre carg, 300 57 1.1 1003 5.0 240 6 28.5 N N/A
Coprocessor CILLLF Passively Cooled - - -
x100

PCIe Card,

3120A Actively Cooled 300 57 1.1 1003 5.0 240 6 28.5 N N/A
Previously Launched and Disclosed

PCIe Card

* r
5110P passively Cooled 225 60 1.053 1011 5.0 320 8 N N/A

*Please refer to our technical documentation for Silicon stepping infal
3 %

Copyrighifi 01 Tmiml Carpormban. Kl righds mrvad.
*Other brands anl nimmies @i the peejiad by of it eapachive o

High-level overview of the Intel® Xeon Phi™ platform:
Software

More Cores. Wider Vectors. Performance Delivered.
Intel® Parallel Studio XE 2013 and Intel® Cluster Studio XE 2013

Scaling
Performance
Efficiently

More Cores

Multicore Many-core

-

I. - EF
Heon

s
Serial |

Performance A A) Serial, Threaded & Cluster
e e W Application Development Suites

50+ cores

Wider Vectors

Task & D.lata Industry-leading
Parallel performance from advanced

128 Bits Performance compilers

Comprehensive libraries

256 Bits :
Parallel programming models

Distributed
512 Bits Performance Insightful analysis tools

Copyri ght© 2013, I t | Corporation. All ri ght
*Other brands name e the prope rty of the

Comprehensive set of SW tools

Advisor XE Math Kernel Library Intel Cilk Plus
VTune Amplifier XE Integrated Performance Threading Building
Inspector XE Primitives Blocks
Trace Analyzer Intel Compilers OpenMP

OpenCL

MPI

Offload/Native/MYO

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Preserve Your Development Investment
Common Tools and Programming Models for Parallelism

Multicore

Heterogeneous
Fortran Computing

Many-core

Develop Using Parallel Models that Support Heterogeneous Computing

Copyri ght© 2013, I t | Corporation. All ri ght
*Other brands name e the pr p rty of the

Intel Xeon Phi Coprocessor programming considerations:

« Native

« Offload

« Explicit block data transfer
« Offloading with Virtual Shared Memory

Spectrum of Programming & Execution Models

Multicore Centric Many-core Centric

(Intel® Xeon® processors) (Intel® Many Integrated Core co-processors)
Multi-core-hosted Offload Symmetric Many-core-hosted

General purpose

! Codes with
serial and p_arallel balanced needs
computing

- Highly-parallel
Codes with highly- codes

parallel phases

Main() Main() Main()
Foo() Foo() Foo()
MPI_*() MPI_*() MPI_*()

Multicore

- Foo() Main() Main()
w ﬂ Foo() Foo()
- MPI_*() MPI_*()

Many-core

Range of Models to Meet Application Needs

Intel® Xeon Phi™ Coprocessor runs either as an
accelerator for offloaded host computation

Host-side offload application / Target-side offload
« More memory available User code
Offload libraries, user- - Better file access Offload libraries
level driver, user- - Host better on serial code user-accessible’
accessible APIs and APIS and
libraries .+ Better uses resources 4 libraries
User-level code User-level code
System-level code System-level code
Intel® Xeon Phi™ Coprocessor Intel® Xeon Phi™
support libraries, tools, and Coprocessor communication
drivers and application-launch
I support
[Linux* OS | [Linux* OS |
[PCI-E Bus]*[PCI-E BUS]

Copyri ght© 2013, I t I Corporation. All r ght

*Other brands name: e the prope rty of the

Or Intel® Xeon Phi™ Coprocessor runs as a
native or MPI* compute node via IP or OFED

Target-side “native” / _
Advantages application Use if
« Simpler model ssh ort‘:teln%t User code ’ :\\I/IOt(:jsetr:-lal
° NO dlreCtlveS nggr%%éc;gOP Standard OS oclest MEmory
) T « Complex code
« Easier port I?l’brarlets: pluslapyi No hot :
rd-party or Inte * INO NOt spots
\- Good kernel test) libraries
User-level code Ve UL el User-level code
System-level code 1 System-level code
Intel® Xeon Phi™ Coprocessor Intel® Xeon Phi™
Architecture support libraries, Coprocessor communication
tools, and drivers and application-launch
I support
[Linux* OS | [Linux* OS |
IB fabric]“[PCI-E Bus]*[PCI-E Bus]

Copyri ght© 2013, I t I Corporation. All r ght

*Other brands name e the prope rty of the pec ive owners

The Intel® Manycore Platform Software Stack
(Intel® MPSS) provides Linux* on the coprocessor

Authenticated users can treat it like another node

ssh micO top
Mem: 298016K used, 7578640K free, OK shrd, 0K buff, 100688K cached
CPU: 0.0% usr 0.3% sys 0.0% nic 99.6% idle 0.0% io 0.0% irg 0.0% sirqg
Load average: 1.00 1.04 1.01 1/2234 7265

PID PPID USER STAT VSZ SMEM CPU $CPU COMMAND

7265 7264 fdkew R 7060 0.0 14 0.3 top
43 2 root SW 0 0.0 13 0.0 [ksoftirgd/13]

5748 1 root S 119m 1.5 226 0.0 ./sep mic server3.8

5670 1 micuser S 97872 1.2 0 0.0 /bin/coi daemon --coiuser=micuser

7261 5667 root S 25744 0.3 6 0.0 sshd: fdkew [priv]

7263 7261 fdkew S 25744 0.3 241 0.0 sshd: fdkew@notty

5667 1 root S 21084 0.2 5 0.0 /sbin/sshd

5757 1 root S 6940 0.0 18 0.0 /sbin/getty -L -1 /bin/noauth 1152
1 0 root S 6936 0.0 10 0.0 init

7264 7263 fdkew S 6936 0.0 6 0.0 sh -c top

Intel MPSS supplies a virtual FS and native execution

sudo scp /opt/intel/composerxe/lib/mic/libiomp5.s0o root@micO:/1ib64
scp a.out micO:/tmp
ssh micO0 /tmp/a.out my-args

Add -mmic to compiles to create native programs

icc -03 -g —-mmic -o nativeMIC myNativeProgram.c

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Alternately, use the offload capabilities of
Intel® Composer XE to access coprocessor

Offload directives in source code trigger Intel Composer to
compile objects for both host and coprocessor

#pragma offload target(mic) inout(A:length(2000)) C/C++
IDIR$ OFFLOAD TARGET (MIC) INOUT (A: LENGTH (2000)) Fortran

When the program is executed and a coprocessor is available,
the offload code will run on that target

* Required data can be transferred explicitly for each offload

« Or use Virtual Shared Memory (_Cilk_shared) to match virtual
addresses between host and target coprocessor

Offload blocks initiate coprocessor computation and can be
synchronous or asynchronous

#ipragma offload transfer target(mic) in(a: length(2000)) signal(a)
'DIRS OFFLOAD TRANSFER TARGET (MIC) IN(A: LENGTH(2000)) SIGNAL (A)
_Cilk spawn Cilk offload asynch-func()

Copyri ght© 2013, I t I Corporation. All r ght

*Other brands name e the prope rty of the

Offload directives are independent of
function boundaries

Target

Intel® Xeon Xeon
Phi™ coprocessor

f _partl() {
a=>b+g();

¥

Host
Intel® Xeon®
processor
750 ¢ A
#pragma offload >
a=b+4g(),
h();
J V
~

attribute__ ((target(mic)))

JOR

N

JOR

attribute__ ((target(mic)))

¥

Execution
If at first offload the
target is available,
the target program
is loaded

At each offload if the
target is available,
statement is run on
target, else it is run
on the host

At program
termination the
target program is
unloaded

Example: Compiler Assisted Offload

« Offload section of code to the coprocessor.

float pi = 0.0f;
#pragma offload target (mic)
#pragma omp parallel for reduction(+:pi)
for (i=0; i<count; i++) {
float t = (float) ((i+0.5f) /count) ;
pi += 4.0£/(1.0£+t*t) ;
}

pi /= count;

« Offload any function call to the coprocessor.

#pragma offload target(mic) \
in(transa, transb, N, alpha, beta) \
in(A:length (matrix elements)) \
in(B:length (matrix elements)) \
in(C:length (matrix elements)) \
out (C:length (matrix elements) alloc_ if (0))
{
sgemm (&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,
&beta, C, &N);

Copyri ght© 2013, I t | Corporation. All r ght served.
*Other brands names are the prope; rty of thei pectiveowners.

Example: Compiler Assisted Offload

 An example in Fortran:

Example — share work between
coprocessor and host using OpenMP*

omp set nested(1l);

#pragma omp parallel private (ip) Top level, runs on host
{ Runs on coprocessor
#pragma omp sections Runs on host

{
#fpragma omp section
/* use pointer to copy back only part of potential array,
to avoid overwriting host */
#fpragma offload target(mic) in(xp) in(yp) in(zp) out(ppot:length(npl))
#pragma omp parallel for private (ip)
for (1=0;i<npl;i++) {
ppot[i] = threed int (x0,xn,y0,yn,z0,zn,nx,ny,nz,xpli],ypli],zpl[1]);
}
#pragma omp section
#pragma omp parallel for private (ip)
for (1=0;i<np2;i++) {
pot [i+npl] =
threed int (x0,xn,y0,yn,z0,zn,nx,ny,nz,xpli+npl],ypli+npl],zp[i+npl]);

Copyright© 2013, Intel Corporation. All rights reserved.
and nal

*Other brands mes are the property of their respective owners.

Pragmas and directives mark data and code to
be offloaded and executed

Offload pragma

Variable/function
offload properties

Entire blocks of
data/code defs

Offload directive

Variable/function
offload properties

Entire code blocks

C/C++ Syntax
#pragma offload <clauses> <statement>
Allow next statement to execute on coprocessor or host CPU

__attribute ((target(mic)))

Compile function for, or allocate variable on, both host CPU
and coprocessor

#ipragma offload attribute(push, target(mic))

#pragma offload attribute (pop)
Mark entire files or large blocks of code to compile for both

Fortran Syntax

'dir$ omp offload <clauses> <statement>
Execute OpenMP* parallel block on coprocessor

'dir$ offload <clauses> <statement>
Execute next statement or function on coproc.

'1dir$ attributes offload:<mic> :: <ret-name> OR
<varl,var2,.>

Compile function or variable for CPU and coprocessor

'dir$ offload begin <clauses>
'dir$ end offload

Copyright© 2013, Intel Corporation. All rights reserved.
rands and n

*Other brand: ames are the property of their respective owners

Options on offloads can control data copying
and manage coprocessor dynamic allocation

Clauses

Multiple coprocessors
Conditional offload
Inputs

Outputs

Inputs & outputs

Non-copied data

Syntax

target (mic[:unit])

if (condition) / manadatory
in(var-list modifiers,)
out (var-list modifiers.,,)

inout (var-list modifiers,,)

nocopy (var-list modifiers,,)

Semantics

Select specific coprocessors

Select coprocessor or host compute
Copy from host to coprocessor
Copy from coprocessor to host

Copy host to coprocessor and back
when offload completes

Data is local to target

Specify copy length

Coprocessor memory
allocation

Coprocessor memory
release

Control target data
alignment

Array partial allocation &
variable relocation

length (N)
alloc if (bool)

free if (bool)

align (N bytes)

alloc (array-slice)
into (var-expr)

Copyright© 2013, Intel Corporation. All rights reserved.

Copy N elements of pointer’s type

Allocate coprocessor space on this
offload (default: TRUE)

Free coprocessor space at the end of
this offload (default: TRUE)

Specify minimum memory alignment
on coprocessor

Enables partial array allocation and
data copy into other vars & ranges

*Other brands and names are the property of their respective owners.

To handle more complex data structures on the
coprocessor, use Virtual Shared Memory

An identical range of virtual addresses is reserved on both host an
coprocessor: changes are shared at offload points, allowing:

« Seamless sharing of complex data structures, including linked lists
« Elimination of manual data marshaling and shared array management
* Freer use of new C++ features and standard classes

Sha\’ec};,s SQaCe

es

Same virtual add(
address range

C/C++ executable

J Offload code
k///—\\\m

BEEHERE| -
VM

coprocessor

Copyright© 2013, Intel Corporation. All rights reserved.
rands and nam

*Other brand: es are the property of their respective owners.

Example: Virtual Shared Memory

« Shared between host and Xeon Phi

Virtual Shared Memory uses special allocation
to manage data sharing at offload boundaries
Declare virtual shared data using _Cilk shared allocation specifier

Allocate virtual dynamic shared data using these special functions:

_Offload shared malloc(), Offload shared aligned malloc(),
_Offload shared free(), Offload shared aligned free()

Shared data copying occurs automatically around offload sections
« Memory is only synchronized on entry to or exit from an offload call
« Only modified data blocks are transferred between host and coprocessor

Allows transfer of C++ objects
« Pointers are transportable when they point to “shared” data addresses

Well-known methods can be used to synchronize access to shared data
and prevent data races within offloaded code

« E.g., locks, critical sections, etc.

This model is integrated with the Intel® Cilk™ Plus parallel extensions

Note: Not supported on Fortran - available for C/C++ only

Copyri ght© 2013, I t I Corporation. All r ght

*Other brands name e the prope rty of the

Data sharing between host and coprocessor can
be enabled using this Intel® Cilk™ Plus syntax

What
Function

Global

File/Function
static

Class

Pointer to
shared data

A shared
pointer

Entire blocks
of code

Syntax

int Cilk shared f(int x){ return x+1; }
Code emitted for host and target; may be called from either side

_Cilk shared int x = 0;

Datum is visible on both sides

static _Cilk_shared int x;

Datum visible on both sides, only to code within the file/function
class Cilk shared x {..};

Class methods, members and operators available on both sides
int Cilk shared *p;

p is local (not shared), can point to shared data

int * Cilk shared p;

p is shared; should only point at shared data

#pragma offload attribute(push, Cilk shared)

#pragma offload attribute (pop)
Mark entire files or blocks of code _Cilk_shared using this pragma

Copyri ght© 2013, I t I Corporation. All r ght

*Other brands name e the prope rty of the

Intel® Cilk™ Plus syntax can also specify the
offloading of computation to the coprocessor

Feature

Offloading a
function call

Offloading
asynchronously

Offloading a
parallel for-
loop

Example

x = Cilk offload func(y):;
func executes on coprocessor if possible

x = Cilk offload to (card num) func(y);
func must execute on specified coprocessor or an error occurs

x = Cilk spawn _Cilk offload func(y);
func executes on coprocessor; continuation available for stealing

_Cilk offload Cilk for(i=0; i<N; i++) {
a[i] = b[i] + c[i];
}

Loop executes in parallel on coprocessor.
The loop is implicitly “un-inlined” as a function call.

Copyri ght© 2013, I t I Corporation. All r ght

*Other brands name e the prope rty of the

Performance and Thread Parallelism

Options for Thread Parallelism

Ease of use / code
Intel® Math Kernel Library maintainability

b
-

OpenMP*

b

Intel® Threading Building Blocks
Intel® Cilk™ Plus
OpenCL*

A

.

Pthreads* and other threading libraries

Programmer control

b

Choice of unified programming to target Intel® Xeon® and Intel® Xeon Phi™ Architecture!

Copyright© 2013, Intel Corporation. All rights reserved.
and nal

*Other brands

mes are the property of their respective owners.

Performance and Thread Parallelism: OpenMP

OpenMP* on the Coprocessor

« The basics work just like on the host CPU
 For both native and offload models
 Need to specify -openmp

 There are 4 hardware thread contexts per core

« Need at least 2 x ncore threads for good performance
- For all except the most memory-bound workloads
- Often, 3x or 4x (number of available cores) is best
- Very different from hyperthreading on the host!

- -opt-threads-per-core=n advises compiler how many
threads to optimize for

« If you don’t saturate all available threads, be sure to
set KMP_AFFINITY to control thread distribution

OpenMP defaults

« OMP_NUM_THREADS defaults to
1 x ncore for host (or 2x if hyperthreading enabled)
* 4 x ncore for native coprocessor applications

« 4 x (ncore-1) for offload applications
- one core is reserved for offload daemons and OS

« Defaults may be changed via environment variables
or via API calls on either the host or the coprocessor

Target OpenMP environment (offload)

Use target-specific APIs to set for coprocessor target only, e.qg.
omp_set_num_threads_target() (called from host)
omp_set_nested_target() etc

« Protect with #ifdef _ INTEL_OFFLOAD, undefined with —no-offload

 Fortran: USE MIC_LIB and OMP_LIB C: #include <offload.h>

Or define MIC - specific versions of env vars using
MIC_ENV_PREFIX=MIC (no underscore)
« Values on MIC no longer default to values on host

« Set values specific to MIC using

export MIC_OMP_NUM_THREADS=120 (all cards)
export MIC_2_ OMP_NUM_THREADS=180 for card #2, etc

export MIC_3_ENV="OMP_NUM_THREADS=240|KMP_AFFINITY=balanced”

Copyright© 2013, Intel Corporation. All rights reserved.
rands and nam

*Other brand: es are the property of their respective owners.

Stack Sizes for Coprocessor

For the main thread, (thread 0), default stack limit is 12 MB

« In offloaded functions, stack is used for local or automatic arrays
and compiler temporaries

« To increase limit, = export MIC_STACKSIZE (e.g. =100M)
- default unit is K (Kbytes)
« For native apps, use ulimit -s (default units are Kbytes)

For worker threads: default stack size is 4 MB

« Space only needed for those local variables or automatic arrays or
compiler temporaries for which each thread has a private copy

* To increase limit, export OMP_STACKSIZE=10M (or as needed)
« Or use dynamic allocation (may be less efficient)

Typical error message if stack limits exceeded:
offload error: process on the device 0 was terminated by SEGFAULT

Thread Affinity Interface

Allows OpenMP threads to be bound to physical or logical cores

« export environment variable KMP_AFFINITY=

physical use all physical cores before assigning threads to other
logical cores (other hardware thread contexts)

compact assign threads to consecutive h/w contexts on same
physical core (eg to benefit from shared cache)

scatter assign consecutive threads to different physical cores
(eg to maximize access to memory)

balanced blend of compact & scatter
(currently only available for Intel® MIC Architecture)

« Helps optimize access to memory or cache

« Particularly important if all available h/w threads not used

- else some physical cores may be idle while others run multiple
threads

« See compiler documentation for (much) more detail

Performance and Thread Parallelism: TBB

Intel® Threading Building Blocks

Widely used C++ template library for parallelism

C++ Library for parallel programming
« Takes care of managing multitasking

Runtime library
« Scalability to available number of threads

Cross-platform
« Windows, Linux, Mac OS* and others

http://threadingbuildingblocks.org

Intel® Threading Building Blocks

Concurrent Containers
Common idioms for concurrent

Generic Parallel Algorithms

adCCesSs

- a scalable alternative serial
container with a lock around it

TBB Flow Graph

Thread Local Storage
Task scheduler Scalable implementation of thread-local data

algorithms that employs task- Synchronization Primitives
stealing to maximize concurrency User-level and OS wrappers for

_ h q mutual exclusion, ranging from atomic
Miscellaneous Threads operations to several flavors of mutexes

Efficient scalable way to exploit the
power of multi-core without having
to start from scratch

Thread-safe timers OS API wrappers and condition variables

Memory Allocation
Per-thread scalable memory manager and false-sharing free allocators

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

parallel_for usage example

#include <tbb/blocked_range.h> |
#include <tbb/parallel_for.h> ChangeArray class defines
using namespace tbb; a for-loop body for parallel_for

| RS- blocked_range - TBB template
representing 1D iteration space

.................................

................................

Foo (array[i]): As usual with C++ function
: et : .
B STy objects the main work
y s done inside operator()
b
int main ()<
int a[n];
..... /[initialize array here... KA call to a template function)
...... P ara||e |_fo ;f:e(-bloc.k.e.d.ﬁ.l:a.n9..@5,,i.n_F.?"_.(..Q.{.mlj.?fughflj 9 iaArray(a)i parallel_for<Range, Body>:
return 0; ... > With arguments
> Range - blocked_range
\Body - ChangeArray)

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Performance and Thread Parallelism: MKL

4 Intel® MKL is industry’s leading math library * A

Vector Random
Vector Math Number
Generators

Fast Fourier
Transforms

Summary

Linear Algebra Statistics Data Fitting

«Multidimensional «Trigonometric canar i3l =Kurtosis +Splines
{up to 7D sHyperbaolic =\fariation sInterpolation
sSparse solvers «FFTW interfaces «Exponental, [i coefficient =Cell search
«Cluster FFT Logarithmic iste = Cuantils
«Power / Root
=Rounding Jeiderre =Min/max
=\Varnance-
covariance

m Intef® MKL

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

MKL Usage Models on Intel® Xeon Phi™
Coprocessor

 Automatic Offload

- No code changes required
- Automatically uses both host and target

- Transparent data transfer and execution management

« Compiler Assisted Offload

- Explicit controls of data transfer and remote execution using compiler
offload pragmas/directives

- Can be used together with Automatic Offload

« Native Execution
- Uses the coprocessors as independent nodes

- Input data is copied to targets in advance

Copyri ght© 2013, I t | Corporation. All ri ght
*Other brands name e the prope rty of the

MKL Execution Models

Many-core
(Intel® Xeon Phi™)

Multicore
(Intel® Xeon®)

Multicore Hosted

Symmetric any Core Hosted

General purpose serial Codes with balanced Highly-parallel codes
and parallel computing needs

Offload

Codes with highly-
parallel phases

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work Division Control in MKL Automatic Offload

mkl_mic_set_Workdivision(Offload 50% of computation only to the 1st
MKL_TARGET_MIC, 0, 0.5) card.

MKL_MIC_O0_WORKDIVISION=0.5 Offload 50% of computation only to the 1st
card.

Copyr ght© 2013 Intel Corporation. All r ght erved.

*Other brands ames are the property of the! p t ve owners.

How to Use MKL with Compiler
Assisted Offload

« The same way you would offload any function call
to the coprocessor.

« An example in C:

MPI Programming Models

Intel® Xeon Phi™ Coprocessor Becomes
a Network Node

Linuk-: =
Intel® Xeon® Processor Intel® Xeon Phi™ Coprocessor

i Virtual Network_
- Connection =

Limux = -
Intel® Xeon® Processor Intel® Xeon Phi™ Coprocessor

Virtual Network
Connection

Intel® Xeon Phi™ Architecture + Linux enables IP addressability

Copyri ght© 2013, I t I Corporation. All r ght

*Other brands name e the pr p rty of the

Coprocessor only Programming Model

MPI 1 Homogenous
. network of many-
MPI ranks on Intel® Xeon . core CPUs
Phi™ coprocessor (only) Y, E
o

: 2 cPU L
All messages into/out of 9 m
the coprocessors < E
Intel® Cilk™ Plus, cPu

OpenMP*, Intel®
Threading Building Blocks,
Pthreads used directly

within MPI processes Build Intel Xeon Phi coprocessor binary using the
Intel® compiler

Upload the binary to the Intel Xeon Phi coprocessor

Run instances of the MPI application on Intel Xeon Phi
coprocessor nodes

Copyright© 2013, Intel Corporation. All rights reserved.
and nal

*Other brands mes are the property of their respective owners.

Symmetric Programming Model

MPI ranks on Intel® Xeon
Phi™ Architecture and host
CPUs

Messages to/from any core

Intel® Cilk™ Plus, OpenMP*
Intel® Threading Building
Blocks, Pthreads* used
directly within MPI
processes

4

*Other

N Heterogeneous
MPL J{ _ network of
homogeneous CPUs
€ S
<
(@) mm
=2 R
D 4= % =
=
€ e

PU

Build binaries by using the resp. compilers targeting Intel
64 and Intel Xeon Phi Architecture

Upload the binary to the Intel Xeon Phi coprocessor

Run instances of the MPI application on different mixed
nodes

Copyright© 2013, Intel Corporation. All rights reserved.
and nal

brands mes are the property of their respective owners.

MPI+Offload Programming Model

MPI ranks on Intel®
Xeon® processors (only)

All messages into/out of
host CPUs

Offload models used to
accelerate MPI ranks

Intel® Cilk™ Plus,
OpenMP*, Intel®
Threading Building
Blocks, Pthreads* within
Intel® Xeon Phi™
coprocessor

*Other

Homogenous network
of heterogeneous
Offloa nodes

iCPU
d Offload

CPU

s |

Network

1

Build Intel® 64 executable with included offload by using
the Intel compiler

Run instances of the MPI application on the host, offloading
code onto coprocessor

Advantages of more cores and wider SIMD for certain
applications

Copyright© 2013, Intel Corporation. All rights reserved.
and nal

brands mes are the property of their respective owners.

Tracing: Intel® Trace Analyzer and Collector

Intel® Trace Analyzer and Collector

File .Style windows Help F1

=18 %]

Wiew Charts Mavigate Advanced Lavout Comparison

AL a’ict.:’traces.n’.poisson_sendleqv. single_.stf
B: C:Acttraces/poizzon_icomm zingle st

0.069500 =

0.070/500 = 0.071|500 =

0.070000 =

Application

0.071(000 =

bedspplication

0.072000 =
il

PO E tapplication
F1
P2

F3

Application wht\pplication 1A

b pplication
i

A pplic.MPL plication futA B Application

ApplicehdPl 4 pplication vl FlLtF] Application

Pt

st pplication

Compare the event
timelines of two
communication profiles

&pplication

A ME]

Application

ApphdP &pplication

BERpplicalkdF Application rkhnnlication hiE] sApplication
062|500 = | 0.063|500 = 0.064 500 =

| 0.063/000 = | 0.0e4 000 =
(RLER:FA | Application Letspplication W Application M

Blue = computation
Red = communication

Flat Profile I Load Balance I Call Tree I Y Tatal Time B/A [1] (Sender by Receiver) \
Group All_Processes LI _I .
B/A [1501 [1ser © [17e Py P1 Py P P{ P{ P4 P| P4 P4 P P P] P| P P] S M= 2.340.
: roup All_Processes E'ID = S 2.080
Giroup Application 0.595 | F q T 1 - Egg
“ Group MPI 0.259 I P3 Sk .
Z 1.301] } Chart showing how the
1.040
ES k. -
Fo ; 0,780 MPI processes interact
P7 A 0,520
Fa &1 0260
< | 0 ' | Lﬁl 0000
0,069 045, 0,072 436 0,003 393 All_Frocesses Major Function Groups Tag Filter
: SEC, " =
0,062 450, 0,064 574: 0,002 124 - All_Processes Major Funckion Groups Tag Filter: J

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective o

whners.

Intel® Trace Analyzer and Collector
helps the developer:

Intel® Trace Analyzer and Collector Overview

r

Visualize and understand parallel application
behavior

Evaluate profiling statistics and load
balancing

Identify communication hotspots

Features
Event-based approach
Low overhead s trumented
Exacutable
Excellent scalability Noda]

Comparison of multiple profiles

Powerful aggregation and filtering functions
Fail-safe MPI tracing

Provides API to instrument user code

MPI correctness checking

Idealizer |

Source
Code

Executable

Instrumentad
Expcutabla
Mode 2

Instrumented
Expcutable
MaodaM

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Full tracing functionality on Intel® Xeon Phi™
coprocessor

Wiewi Charts Mavigate Advanced [ayout

Flat Profile | Load Balance | Call Thee | Call Graph |
IGluup all_Prigesses 5

Marme || st |Tsalt | Total wcalls |msaifscal |
4-Grogp All Frocesses

Groop Appdication 17a. x5 =« 408_ 0i6 5 g 33 3768 =

MPI Comm siza 545, 9385a-86 5 Ef._995a—-8 = g 7.12437a-4 =

MPI Comm rank 1746, de-4 = I76.98de—8 = 8 2T 12%—4 =
201585 5

Miew LCharts Navigate Advanced [ayout
2 oa g = 20 = M 0 =& =1 ﬂ
h

n.n-.-a TR T o] A|r1 rq” 1l AT IR p | BdE

0000 O, 53 011

4 530110 399 SeL. All_Modes MPf expanded in (Major Function Groups] | Tag Flitar

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Profiling: Intel® Trace Analyzer and Collector

Collecting Hardware Performance
Data

Hardware counters and events

« 2 counters in core, most are thread specific

« 4 outside the core (uncore) that get no thread or core details
« See PMU documentation for a full list of events

Collection
« Invoke from Intel® VTune™ Amplifier XE

- If collecting more than 2 core events, select multi-run for more
precise results or the default multiplexed collection, all in one run

« Uncore events are limited to 4 at a time in a single run

« Uncore event sampling needs a source of PMU interrupts, e.g.
programming cores to CPU_CLK_UNHALTED

Output files
« Intel VTune Amplifier XE performance database

Intel® VTune™ Amplifier XE offers a rich GUI

Menu and

pile”_Help Tool bars

Intel VTune Amplifier XE 2011

| #% Top-down Tree|

1 = : ~
s = ' LPU time E
([:
. CPU Timew 32 stack(s) selected. Viewing < ~iof32 B
Fu.ncc:|Tr;ta ck Iz‘ Ov_;rr:za o Mc Current stack is 47.8% of selection

. | 47.8% (31265 of 6.5425) |
' Idle Poor Ok Ideal - L - —
! | . ! SystemProceduralFire.DLLIFireObjectiiche.., ~

& FireObject:checkCollision dags| SystermProcedun E‘,“‘*PmproceduraIFire.DLL!FireObject::F‘ro...|
& dliStopPlugin [CEL T] Oms RenoeSustem L ff SystemProceauiuifie= DLL!FireOhject::Fire...iE

¥ TaskManagerTRE:WaitForSys 6.155s [Orns, Sroke.exe Smoke.exelParallelForBody:operatordicla,..l
B FireQbject:ProcessFireCollisiof 5118s C Oms SystemProcedur Smunasxeltbbuinternalustart for<class th...
& TaskManagerTBB:ParallelFor | 2.905: [Orns Srmoke.exe Smoke.exelTaskianagerTBB:ParallelFor(...
[BaseThreadlnitThunk 2522: [S Oms kernel32.dll AysiemPriocedumlrire O M whiect-Fro..
LB e L e Dk i] - cnn - —— PR N R T SysternProceduralFire. DLLIFireObjectiUp .

- Selected 1 rowf(s): 6.542s = J, SystemProceduralFire.DLLIFireQbject:upd..
| Fle i | ’ SysternProceduralFire. DLLIFireTask: Updat.. 'I

Ruler Area
% Global Mark
wiinMainCRTStartu. . ¥ Frame
Thread (Dx4c13) Thread
[Thread {0x344) B Running

[Thread (0waf7c)
[Thread {0x537c)

M~ fRefd -

2] Wyl CPU Time
7 Usei Task
CPU Usage

crues0 o puas s g i, e RN O B VLR] | oo e
II || ‘ Frames over Time
Wk Frame Rate
4 | 1 | ¢

M Mo filters are applied. 7 r~‘||:u:|uIE:'I'l'|rEa|:|: (ck |'"'||:||:|E: -

Frames over Time

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® VTune™ Amplifier XE on Intel® Xeon
Phi™ coprocessors
Adjust Data Grouping Tl ew 1l

B kB D PR
welcome | roD2h 5

Jhigme/michomeirreed projects/MICtestiperfMIC - Intel YTune Amplifier

Function - Call Stack
Module - Function - Call Stack o = |ightweight Hotspots - Holspalts £ @ Intel WTune Amplifier XE 2013
Source File - Function - Call Stack nalysks Target| | Analtyals Typs| W Collection Log || M Summisry & Top-down Tres | | BB Task +
Thread - Function - Call Stack

Grouping: | Funchion (Theead § s Contens § Call Stack = | | Harnchaare Event Samala i
; 1 #Wiewing 4 Lof 1 b sebecter skack

... (Partial list shown) Function | Thread § HW Context / Call Stack | CPU Timsew ™ Insmsctions fetred G Raty

= 100.0% {0.3045 of 0.304s]
b [iewornpt 1] TIEA0TE 145,160,000 000 5.41_"' e
NO Ca” Stacks Y€t b difursion_tiledgom panarallal @7 545, 1935 LT K KK Tn | v isys_sched_yield - schede
P _ o salfting 47,179z P00 000 0 33 vmilire! | Urreewn] - sched.c

b _raw_spin_unigck_in 23,6515 £ 5161000 09 a6 [vmiious [Urknown] - schied.c
g g b diffusion_basslnee B.4495: 450 000 000 - |
Double Click Functian P _raw_spin_untock_irqpestone 3.3495 WAMAGN 2EE|
. P ticket_sgin_lock 12205 1416004080000 4
to VIeW Sou rce bE-'r'EE\E'r'I'I_'.'ﬁ"_:'-'-P:‘E'_":H'-E{i-:I'E‘ 2009 1 100000 195
b pur_timar_cadting 1.BA5E 0 Q.
! b hmimser_run_gerelng 16705 [} 505
Filter b wesgrned_cpuload 0465 01K KK 5T in

by Timeline Selection RES ' saeitonsi 0%ow 'Biooon 13-
(or by Grid Selection) T T T T i s R T P T
s 07| i | =8B unning

T L ™ o e bt el i e i i T —
[Thead |0xl? [+ ik OFU Time

L |
(Treead (Cula =~ A CPU Time
£ [Theead (Cedd ;
E. ead (Oxla
Wraad [{nla
ead [Oxla -

Filter by Module & i =,

Other Controls : ¢ | oo - -

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® VTune™ Amplifier XE displays event data
at function, source & assembly levels

@ Lightweight Hotspots - Hotspots # @ Intel VTune Amplifier XE 2013 ‘
!

(@ Analysis Target| | © Analysis Typéf # Collection Log| | i Summary |+ Bottom-up ||+ Top-down Tree -Rrr o)l B diffusion.c o

Source || Assembl . I T
Time on Source / Asm 'CPUTI..® Instructions ... ﬂ Code Loc... Sou.. Assembly .iCP.‘-ﬂ' Ins....~
o 1 %™, 21105 470,000,000 = 0x407834 271 vloadunpackhd ©x44(%rax,%rls,4), %ke, %z |3.1.540.. | |
270 f2 tlc] = ce = 1 tfc] + cj I96.B07s 19.380,0000... x40783c 270 vprefetchel Bx204(%rdx,%rl4,4) 2| 22
a7 e 25006 41.250.000,0 ... 0x407846 271 vloadunpackhd 8x44(%rl12,%rl4,4), %ke, %z | 3.5.. 650.., | ‘
272 f 0xa0784e 270 vprefetched 8xcéd(%rdx,%rl4,4) 7.0../950.. E
273 ++C;)‘ 06245 470,000, 000 Cx407858 270 vloadunpackhd 0x44(%rbx,%rl4,4), %k8, %z | 3.5.. 810.. |
. : = (407860 271 vmelps %zmmls, %zmm4, %k8, %Zzmm]Q 2.1.. 810.. 5
Quick Asm navigation: 0407866 271 vmulps %zmml7, %zom@, %k, Yzmm2o 32.840. N
. e e, x40786C 271 vmulps %zamZl, %zamll, %kB, %Zam25 31. 800. &
Select source to highlight Asm x407872 271 vioadunpackhd Bxad(%rcx,%rld,4), %k, N 33. 10.| S
8 tlc] = cc ¥ TLT[c]* ow | 14615 1890,000,000 0x40787a 271 vimadd23lps SzmmlZ, %zmml6, %ko, %zmmls | 3.1. 950 |
279 +cs * 1 tls] +cn = fl| 1734s 520,000,000‘ ‘ 0x407880 271 vfmadd23lps %zmnS, %zwml8, %k8, sgem2d 30. 1O,
280 } /7 tile ny - Oxdb7g86 271 vieadd23lps %emmd, Simml2, %kd, Sowmis 28 Ll.|
281 } // tile nz # 0x40788c 271 vaddps %Tam20, %znnl9, %k0, %znm24 325 Lo
282 } // block ny 0.0095 0x407892 271 vieqgd231ps Szemld, Nzwn23, Yk, \zm2s | 2.8.. 990. il
283 REAL *t = f1 t; 0.037s 0x407898 271 vaddig g , = . .
284 f1t = f2.t; (x40789% 270 nap Right click for instruction
. O=xd0789f 270 | wvmavaps %gn

Quickly scroll to hot spots. roaSiss e reference manual
Ox4078ae 264 cmp %rll, %ri4 |35. 1.0.[18

Scroll Bar “Heat Map” is an 0x4078b1 264 ih 8x487781 <Block 58 S
overview of hot spots Blogk 60:

0.6.. 250..
e T ~nn

"Highlighted 172 raw(s): 209.. 41,..

Click jump to scroll Asm

0x4078b7 266 mav &

PP X 1o . ~em —_
»

Selected 1 row(s):| 299.862s 41,250,000,000

Intel® VTune™ Amplifier XE 2013

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Conclusions

Conclusions: Intel® Xeon Phi™ Coprocessor
supports a variety of programming models

The familiar Intel development environment is available:

Intel® Composer: C, C++ and Fortran Compilers
OpenMP*

Intel® MPI Library support for the Intel® Xeon Phi™ Coprocessor
- Use as an MPI node via TCP/IP or OFED

Parallel Programming Models
- Intel® Threading Building Blocks (Intel® TBB)
- Intel® Cilk™ Plus

Intel support for gdb on Intel Xeon Phi Coprocessor

Intel Performance Libraries (e.g. Intel Math Kernel Library)
- Three versions: host-only, coprocessor-only, heterogeneous

Intel® VTune™ Amplifier XE for performance analysis
Standard runtime libraries, including pthreads*

Intel® Xeon Phi™ Coprocessor Developer site:

http://software.intel.com/mic-developer

One Stop Shop for:

Intel* Xeon Phi” Coprocessor

Parallel Processing

Architecture for Descovery

Tools & Software Downloads

Getting Started Development Guides

e GET SUPPORT

Evpil iy Iriegraind Com
Produoctivity via srchitecture mnowvation coupded with familinr software --\':.5_::'&:": Faros

Imtel® Keon Phi™ coproonssnr torpss SrupreTeng Fom

GET MORE (NECRMATION Video Workshops, Tutorials, & Events

WL S TR TR Dol
Darame
F b

Atierad am Ewerti

i Code Samples & Case Studies

SOFTWARE DEVELOPRENT
PRODLICTS

Articles, Forums, & Blogs

'
BB

E [
EE B
BgE
L
[TR
=
&5
=
1=
£ K
[
E 5 &
E
L
=
f.\-E'r
i
B
=
B
E
5 SN
i
T

i e e Associated Product Links

http://software.intel.com/mic-developer

TUTNEr Dranas ana rnaimnes are e property or Ueir respecuve Owners.

Resources

http://software.intel.com/mic-developer
« Developer’s Quick Start Guide

 Programming Overview
e New User Forum at
http://software.intel.com/en-us/forums/intel-many-integrated-core

http://software.intel.com/en-us/articles/programming-and-
compiling-for-intel-many-integrated-core-architecture

http://software.intel.com/en-us/articles/advanced-optimizations-
for-intel-mic-architecture

Intel® Composer XE 2013 for Linux* User and Reference Guides

Intel Premier Support https://premier.intel.com

Copyright© 2013, Intel Corporation. All rights reserved.
rands and nam

*Other brand: es are the property of their respective owners.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Offloaded data have some restrictions and
directives to channel their transfer

Offload data are limited to scalars, arrays, and “bitwise-
copyable” structs (C++) or derived types (Fortran)

« No structures with embedded pointers (or allocatable arrays)
« No C++ classes beyond the very simplest

« Fortran 2003 object constructs also off limits, mostly

« Data exclusive to the coprocessor has no restrictions

Offload data includes all scalars & named arrays in lexical
scope, which are copied both directions automatically

« IN, OUT, INOUT, NOCOPY are used to limit/channel copying

« Data not automatically transferred:
- Local buffers referenced by local pointers
- Global variables in functions called from the offloaded code

« Use IN/OUT/INOUT to specify these copies — use LENGTH

alloc_if() and free_if() provide a means to
manage coprocessor memory allocs

Both default to true: normally coprocessor variables are
created/destroyed with each offload
A common convention is to use these macros:

#define ALLOC alloc_if(1)
#define FREE free_if(1)

#define RETAIN free_if(0)
#define REUSE alloc_if(0)

To allocate a variable and keep it for the next offload
#pragma offload target(mic) in(p:length(n) ALLOC RETAIN)

To reuse that variable and keep it again:
#pragma offload target(mic) in(p:length(n) REUSE RETAIN)

To reuse one more time, then discard:
#pragma offload target(mic) in(p:length(n) REUSE FREE)

Copyri ght© 2013 I t | Corporation. All ri ght served.
*Other brands mes the prope! rty of the pective owners.

