
An Introduction to the
Intel® Xeon Phi™ Coprocessor

INFIERI-2013 - July 2013

Leo Borges (leonardo.borges@intel.com)

Intel Software & Services Group

2

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

3

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Large Scale

Clusters

for Test &

Optimization

Large Scale

Clusters

for Test &

Optimization

Tera-

Scale

Research

Tera-

Scale

Research

Leading

Performance,

Energy Efficient

Leading

Performance,

Energy Efficient

Platform

Building

Blocks

Platform

Building

Blocks

Dedicated,

Renowned

Applications

Expertise

Dedicated,

Renowned

Applications

Expertise

Dedicated,

Renowned

Applications

Expertise

Broad Software

Tools

Portfolio

Broad Software

Tools

Portfolio

Defined

HPC

Application

Platform

Defined

HPC

Application

Platform

Many

Integrated

Core

Architecture

Many

Integrated

Core

Architecture

Manufacturing

Process

Technologies

Manufacturing

Process

Technologies

Exa-Scale LabsExa-Scale LabsExa-Scale Labs

Intel in High-Performance Computing

A long term commitment to the HPC market segment

4

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

HPC Processor Solutions

Common Intel Environment

Portable code, common tools

Xeon®Xeon®Xeon®Xeon®

General Purpose Architecture

Leadership Per Core Performance

FP/core CAGR via AVX

Multi-Core CAGR Intel® Intel® Intel® Intel® Xeon Phi™ Xeon Phi™ Xeon Phi™ Xeon Phi™
CoprocessorCoprocessorCoprocessorCoprocessor

Trades a “big” IA core for
multiple lower performance
IA cores resulting in higher
performance for a subset of
highly parallel applications

EN
General
purpose
perf/watt

EP
Max perf/watt

w/ Higher
Memory BW /
freq and QPI
ideal for HPC

Xeon EX
Additional
sockets &

big memory

EP 4S
Additional
compute
density

Multi-Core Many-Core

5

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

6

Medical imaging
and biophysics

Computer Aided
Design

& Manufacturing

Climate modeling &
weather prediction

Financial
analyses, trading

Energy &oil
exploration

Digital content
creation

Communication
Compute Process

C/C++
Fortran

Parallel Application Types Hardware Options for
Parallel Application Types

Fine
Grain

Coarse
Grain

Embarrassingly
Parallel

Highly Parallel Compute Kernels

FFTsFFTsFFTsFFTs LU FactorizationLU FactorizationLU FactorizationLU Factorization

BlackBlackBlackBlack----ScholesScholesScholesScholes Sparse/Dense Matrix MultSparse/Dense Matrix MultSparse/Dense Matrix MultSparse/Dense Matrix Mult

Vector MathVector MathVector MathVector Math

…

OR

Intel® MIC Architecture

Highly Parallel Applications
Markets, Types, & Hardware

6

7

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Each Intel® Xeon Phi™ Coprocessor core is a

fully functional multi-thread execution unit

>50 in-order cores

• Ring interconnect

64-bit addressing

Scalar unit based on Intel® Pentium®

processor family

• Two pipelines

– Dual issue with scalar instructions

• One-per-clock scalar pipeline throughput

– 4 clock latency from issue to resolution

4 hardware threads per core

• Each thread issues instructions in turn

• Round-robin execution hides scalar unit latency

8

RingRing

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache
32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector
Unit

Scalar
Unit

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Each Intel® Xeon Phi™ Coprocessor core is a

fully functional multi-thread execution unit

>50 in-order cores

• Ring interconnect

64-bit addressing

Scalar unit based on Intel® Pentium®

processor family

• Two pipelines

– Dual issue with scalar instructions

• One-per-clock scalar pipeline throughput

– 4 clock latency from issue to resolution

4 hardware threads per core

• Each thread issues instructions in turn

• Round-robin execution hides scalar unit latency

9

RingRing

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache
32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector
Unit

Scalar
Unit

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Each Intel® Xeon Phi™ Coprocessor core is a

fully functional multi-thread execution unit

>50 in-order cores

• Ring interconnect

64-bit addressing

Scalar unit based on Intel® Pentium®

processor family

• Two pipelines

– Dual issue with scalar instructions

• One-per-clock scalar pipeline throughput

– 4 clock latency from issue to resolution

4 hardware threads per core

• Each thread issues instructions in turn

• Round-robin execution hides scalar unit latency

10

RingRing

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache
32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector
Unit

Scalar
Unit

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Each Intel® Xeon Phi™ Coprocessor core is a

fully functional multi-thread execution unit

>50 in-order cores

• Ring interconnect

64-bit addressing

Scalar unit based on Intel® Pentium®

processor family

• Two pipelines

– Dual issue with scalar instructions

• One-per-clock scalar pipeline throughput

– 4 clock latency from issue to resolution

4 hardware threads per core

• Each thread issues instructions in turn

• Round-robin execution hides scalar unit latency

11

RingRing

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache
32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector
Unit

Scalar
Unit

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Each Intel® Xeon Phi™ Coprocessor core is a

fully functional multi-thread execution unit

>50 in-order cores

• Ring interconnect

64-bit addressing

Scalar unit based on Intel® Pentium®

processor family

• Two pipelines

– Dual issue with scalar instructions

• One-per-clock scalar pipeline throughput

– 4 clock latency from issue to resolution

4 hardware threads per core

• Each thread issues instructions in turn

• Round-robin execution hides scalar unit latency

12

RingRing

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache
32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector
Unit

Scalar
Unit

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Each Intel® Xeon Phi™ Coprocessor core is a

fully functional multi-thread vector unit

Optimized

• Single and Double precision

All new vector unit

• 512-bit SIMD Instructions – not Intel® SSE,
MMX™, or Intel® AVX

• 32 512-bit wide vector registers

– Hold 16 singles or 8 doubles per register

Fully-coherent L1 and L2 caches

13

RingRing

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache
32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector
Unit

Scalar
Unit

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reminder: Vectorization, What is it?
(Graphical View)

14

for (i=0;i<=MAX;i++)

c[i]=a[i]+b[i];

+

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

Vector
- One Instruction
- Eight Mathematical

Operations1

1. Number of operations per instruction varies based on the which SIMD instruction is used and the width of the operands

+

CCCC

BBBB

AAAA

Scalar
- One Instruction
- One Mathematical

Operation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Data Types for
Intel® MIC Architecture

16x floats

8x doubles

16x 32-bit integers

8x 64-bit integers

now

now

15

Takeaway: Vectorization is very important

15

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Individual cores are tied together via
fully coherent caches into a
bidirectional ring

16

GDDR

GDDR
GDDR

GDDR

PCIexp

L1 32K I- D-cache per core

3 cycle access
Up to 8 concurrent accesses

L2 512K cache per core

11 cycle best access
Up to 32 concurrent
accesses

GDDR5 Memory
16 memory channels
- Up to 5.5 Gb/sec

8 GB 300ns access

Bidirectional ring
115 GB/sec

Distributed Tag
Directory (DTD)
reduces ring
snoop traffic

PCIe port has its
own ring stop

Takeaway: Parallelization and data placement
are important

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Processor Brand
Name

Codename SKU #
Form Factor,

Thermal

Board
TDP

(Watts)

Max # of
Cores

Clock
Speed
(GHz)

Peak
Double

Precision
(GFLOP)

GDDR5
Memory
Speeds
(GT/s)

Peak
Memory

BW

Memory
Capacity
(GB)

Total
Cache
(MB)

Enabled
Turbo

Turbo
Clock
Speed
(GHz)

Intel® Xeon
Phi™

Coprocessor
x100

Knights
Corner

7120P
PCIe Card,

Passively Cooled
300 61 1.238 1208 5.5 352 16 30.5 Y 1.333

7120X
PCIe Card,
No Thermal
Solution

300 61 1.238 1208 5.5 352 16 30.5 Y 1.333

5120D

PCIe Dense
Form Factor,
No Thermal
Solution

245 60 1.053 1011 5.5 352 8 30 N N/A

3120P
PCIe Card,

Passively Cooled
300 57 1.1 1003 5.0 240 6 28.5 N N/A

3120A
PCIe Card,

Actively Cooled
300 57 1.1 1003 5.0 240 6 28.5 N N/A

Previously Launched and Disclosed

5110P*
PCIe Card,

Passively Cooled
225 60 1.053 1011 5.0 320 8 30 N N/A

Intel® Xeon Phi™ Coprocessor x100 Family Reference Table

*Please refer to our technical documentation for Silicon stepping information

18

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Industry-leading
performance from advanced
compilers

• Comprehensive libraries

• Parallel programming models

• Insightful analysis tools

More Cores. Wider Vectors. Performance Delivered.
Intel® Parallel Studio XE 2013 and Intel® Cluster Studio XE 2013

Serial
Performance

Scaling
Performance
Efficiently

Multicore Many-core

128 Bits

256 Bits

512 Bits

50+ cores

More Cores

Wider Vectors
Task & Data

Parallel
Performance

Distributed
Performance

19

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Advisor XE
VTune Amplifier XE
Inspector XE
Trace Analyzer

Code Analysis

Comprehensive set of SW tools

Intel Cilk Plus
Threading Building
Blocks
OpenMP
OpenCL
MPI
Offload/Native/MYO

Programming
Models

Math Kernel Library
Integrated Performance
Primitives
Intel Compilers

Libraries &
Compilers
Libraries &
Compilers

20
20

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Preserve Your Development Investment
Common Tools and Programming Models for Parallelism

Multicore

Many-core

Heterogeneous
Computing

Intel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk PlusIntel® Cilk Plus

Intel® TBBIntel® TBBIntel® TBBIntel® TBBIntel® TBBIntel® TBBIntel® TBBIntel® TBB Offload PragmasOffload PragmasOffload PragmasOffload PragmasOffload PragmasOffload PragmasOffload PragmasOffload Pragmas

OpenCL*OpenCL*OpenCL*OpenCL*OpenCL*OpenCL*OpenCL*OpenCL*

OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*

OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*OpenMP*

CoarrayCoarrayCoarrayCoarrayCoarrayCoarrayCoarrayCoarray

Offload DirectivesOffload DirectivesOffload DirectivesOffload DirectivesOffload DirectivesOffload DirectivesOffload DirectivesOffload Directives

Intel® MPIIntel® MPIIntel® MPIIntel® MPIIntel® MPIIntel® MPIIntel® MPIIntel® MPI

Intel® MKLIntel® MKLIntel® MKLIntel® MKLIntel® MKLIntel® MKLIntel® MKLIntel® MKL

C/C++C/C++C/C++C/C++

FortranFortranFortranFortran

Intel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ CompilerIntel® C/C++ Compiler

Intel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran CompilerIntel® Fortran Compiler

Develop Using Parallel Models that Support Heterogeneous Computing

21

22

Introduction

High-level overview of the Intel® Xeon Phi™ platform: Hardware and
Software

Intel Xeon Phi Coprocessor programming considerations:

• Native

• Offload

• Explicit block data transfer

• Offloading with Virtual Shared Memory

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Spectrum of Programming & Execution Models

General purpose
serial and parallel
computing

Codes with highly-
parallel phases

Highly-parallel
codes

Codes with
balanced needs

Main()
Foo()

MPI_*()

Foo()

Main()
Foo()

MPI_*()

Main()
Foo()

MPI_*()

Main()
Foo()

MPI_*()

Main()
Foo()

MPI_*()
Multicore

Many-core

Multicore Centric ManyMulticore Centric ManyMulticore Centric ManyMulticore Centric Many----core Centriccore Centriccore Centriccore Centric

(Intel® Xeon® processors) (Intel® Many Integrated Core co(Intel® Xeon® processors) (Intel® Many Integrated Core co(Intel® Xeon® processors) (Intel® Many Integrated Core co(Intel® Xeon® processors) (Intel® Many Integrated Core co----procesprocesprocesprocessors)sors)sors)sors)

MultiMultiMultiMulti----corecorecorecore----hosted Offload Symmetric Manyhosted Offload Symmetric Manyhosted Offload Symmetric Manyhosted Offload Symmetric Many----corecorecorecore----hosted hosted hosted hosted

Range of Models to Meet Application NeedsRange of Models to Meet Application NeedsRange of Models to Meet Application NeedsRange of Models to Meet Application Needs

23

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Xeon Phi™ Coprocessor runs either as an
accelerator for offloaded host computation

24

Linux* OS

Intel® Xeon Phi™ Coprocessor
support libraries, tools, and

drivers

Linux* OS

PCI-E Bus PCI-E Bus

Intel® Xeon Phi™
Coprocessor communication

and application-launch
support

Intel® Xeon Phi™ Coprocessor Host Processor

System-level code System-level code

User-level codeUser-level code

Offload libraries, user-
level driver, user-

accessible APIs and
libraries

User code

Host-side offload application

User code

Offload libraries,
user-accessible

APIs and
libraries

Target-side offload
applicationAdvantages

• More memory available
• Better file access
• Host better on serial code
• Better uses resources

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

ssh or telnet
connection to
coprocessor
IP address

Virtual terminal session

Or Intel® Xeon Phi™ Coprocessor runs as a
native or MPI* compute node via IP or OFED

25

Linux* OS Linux* OS

PCI-E Bus PCI-E Bus

Intel® Xeon Phi™
Coprocessor communication

and application-launch
support

Intel® Xeon Phi™ Coprocessor Host Processor

System-level code System-level code

User-level codeUser-level code

Target-side “native”
application

User code

Standard OS
libraries plus any
3rd-party or Intel

libraries

Intel® Xeon Phi™ Coprocessor
Architecture support libraries,

tools, and drivers

IB fabric

Advantages
• Simpler model

• No directives
• Easier port

• Good kernel test

Use if
• Not serial
• Modest memory
• Complex code
• No hot spots

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The Intel® Manycore Platform Software Stack
(Intel® MPSS) provides Linux* on the coprocessor

26

Authenticated users can treat it like another node

Intel MPSS supplies a virtual FS and native execution

Add –mmic to compiles to create native programs

ssh mic0 top
Mem: 298016K used, 7578640K free, 0K shrd, 0K buff, 100688K cached

CPU: 0.0% usr 0.3% sys 0.0% nic 99.6% idle 0.0% io 0.0% irq 0.0% sirq

Load average: 1.00 1.04 1.01 1/2234 7265

PID PPID USER STAT VSZ %MEM CPU %CPU COMMAND

7265 7264 fdkew R 7060 0.0 14 0.3 top

43 2 root SW 0 0.0 13 0.0 [ksoftirqd/13]

5748 1 root S 119m 1.5 226 0.0 ./sep_mic_server3.8

5670 1 micuser S 97872 1.2 0 0.0 /bin/coi_daemon --coiuser=micuser

7261 5667 root S 25744 0.3 6 0.0 sshd: fdkew [priv]

7263 7261 fdkew S 25744 0.3 241 0.0 sshd: fdkew@notty

5667 1 root S 21084 0.2 5 0.0 /sbin/sshd

5757 1 root S 6940 0.0 18 0.0 /sbin/getty -L -l /bin/noauth 1152

1 0 root S 6936 0.0 10 0.0 init

7264 7263 fdkew S 6936 0.0 6 0.0 sh -c top

sudo scp /opt/intel/composerxe/lib/mic/libiomp5.so root@mic0:/lib64

scp a.out mic0:/tmp

ssh mic0 /tmp/a.out my-args

icc –O3 –g –mmic –o nativeMIC myNativeProgram.c

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Alternately, use the offload capabilities of

Intel® Composer XE to access coprocessor

Offload directives in source code trigger Intel Composer to
compile objects for both host and coprocessor

When the program is executed and a coprocessor is available,
the offload code will run on that target

• Required data can be transferred explicitly for each offload

• Or use Virtual Shared Memory (_Cilk_shared) to match virtual
addresses between host and target coprocessor

Offload blocks initiate coprocessor computation and can be
synchronous or asynchronous

27

#pragma offload target(mic) inout(A:length(2000)) C/C++
!DIR$ OFFLOAD TARGET(MIC) INOUT(A: LENGTH(2000)) Fortran

#pragma offload_transfer target(mic) in(a: length(2000)) signal(a)
!DIR$ OFFLOAD_TRANSFER TARGET(MIC) IN(A: LENGTH(2000)) SIGNAL(A)
_Cilk_spawn _Cilk_offload asynch-func()

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Offload directives are independent of
function boundaries

28

Host
Intel® Xeon®
processor

Target
Intel® Xeon Xeon
Phi™ coprocessor

Execution
• If at first offload the

target is available,
the target program
is loaded

• At each offload if the
target is available,
statement is run on
target, else it is run
on the host

• At program
termination the
target program is
unloaded

f() {

#pragma offload

a = b + g();

h();

}

f_part1() {

a = b + g();

}

__attribute__ ((target(mic)))

g() {

...

}

h() {

...

}

__attribute__ ((target(mic)))

g() {

...

}

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Compiler Assisted Offload

• Offload section of code to the coprocessor.

• Offload any function call to the coprocessor.

29

#pragma offload target(mic) \
in(transa, transb, N, alpha, beta) \
in(A:length(matrix_elements)) \
in(B:length(matrix_elements)) \
in(C:length(matrix_elements)) \
out(C:length(matrix_elements) alloc_if(0))
{

sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,
&beta, C, &N);

}

float pi = 0.0f;
#pragma offload target(mic)
#pragma omp parallel for reduction(+:pi)
for (i=0; i<count; i++) {

float t = (float)((i+0.5f)/count);
pi += 4.0f/(1.0f+t*t);

}
pi /= count;

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Compiler Assisted Offload

• An example in Fortran:

30

!DEC$ ATTRIBUTES OFFLOAD : TARGET(MIC) :: SGEMM
!DEC$ OMP OFFLOAD TARGET(MIC) &
!DEC$ IN(TRANSA, TRANSB, M, N, K, ALPHA, BETA, LDA, LDB, LDC), &
!DEC$ IN(A: LENGTH(NCOLA * LDA)), &
!DEC$ IN(B: LENGTH(NCOLB * LDB)), &
!DEC$ INOUT(C: LENGTH(N * LDC))
CALL SGEMM(TRANSA, TRANSB, M, N, K, ALPHA, &

A, LDA, B, LDB BETA, C, LDC)

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example – share work between
coprocessor and host using OpenMP*

omp_set_nested(1);

#pragma omp parallel private(ip)
{

#pragma omp sections
{

#pragma omp section
/* use pointer to copy back only part of potential array,

to avoid overwriting host */

#pragma offload target(mic) in(xp) in(yp) in(zp) out(ppot:length(np1))
#pragma omp parallel for private(ip)

for (i=0;i<np1;i++) {

ppot[i] = threed_int(x0,xn,y0,yn,z0,zn,nx,ny,nz,xp[i],yp[i],zp[i]);

}

#pragma omp section
#pragma omp parallel for private(ip)

for (i=0;i<np2;i++) {

pot[i+np1] =

threed_int(x0,xn,y0,yn,z0,zn,nx,ny,nz,xp[i+np1],yp[i+np1],zp[i+np1]);

}

}

}

31

Top level, runs on host
Runs on coprocessor
Runs on host

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pragmas and directives mark data and code to
be offloaded and executed

32

C/C++ Syntax

Offload pragma #pragma offload <clauses> <statement>

Allow next statement to execute on coprocessor or host CPU

Variable/function
offload properties

__attribute__((target(mic)))

Compile function for, or allocate variable on, both host CPU
and coprocessor

Entire blocks of
data/code defs

#pragma offload_attribute(push, target(mic))

#pragma offload_attribute(pop)

Mark entire files or large blocks of code to compile for both
host CPU and coprocessorFortran Syntax

Offload directive !dir$ omp offload <clauses> <statement>
Execute OpenMP* parallel block on coprocessor

!dir$ offload <clauses> <statement>
Execute next statement or function on coproc.

Variable/function
offload properties

!dir$ attributes offload:<mic> :: <ret-name> OR
<var1,var2,…>

Compile function or variable for CPU and coprocessor

Entire code blocks !dir$ offload begin <clauses>
!dir$ end offload

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Options on offloads can control data copying
and manage coprocessor dynamic allocation

33

Clauses Syntax Semantics

Multiple coprocessors target(mic[:unit]) Select specific coprocessors

Conditional offload if (condition) / manadatory Select coprocessor or host compute

Inputs in(var-list modifiersopt) Copy from host to coprocessor

Outputs out(var-list modifiersopt) Copy from coprocessor to host

Inputs & outputs inout(var-list modifiersopt) Copy host to coprocessor and back
when offload completes

Non-copied data nocopy(var-list modifiersopt) Data is local to target

Modifiers

Specify copy length length(N) Copy N elements of pointer’s type

Coprocessor memory
allocation

alloc_if (bool) Allocate coprocessor space on this
offload (default: TRUE)

Coprocessor memory
release

free_if (bool) Free coprocessor space at the end of
this offload (default: TRUE)

Control target data
alignment

align (N bytes) Specify minimum memory alignment
on coprocessor

Array partial allocation &
variable relocation

alloc (array-slice)
into (var-expr)

Enables partial array allocation and
data copy into other vars & ranges

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

To handle more complex data structures on the

coprocessor, use Virtual Shared Memory

An identical range of virtual addresses is reserved on both host an
coprocessor: changes are shared at offload points, allowing:

• Seamless sharing of complex data structures, including linked lists

• Elimination of manual data marshaling and shared array management

• Freer use of new C++ features and standard classes

34

Host
VM

coproc
VM

Offload code

C/C++ executable

Host coprocessor

Same virtual
address range

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Virtual Shared Memory

• Shared between host and Xeon Phi

35

// Shared variable declaration
_Cilk_shared T in1[SIZE];
_Cilk_shared T in2[SIZE];
_Cilk_shared T res[SIZE];

_Cilk_shared void compute_sum()
{

int i;
for (i=0; i<SIZE; i++) {

res[i] = in1[i] + in2[i];
}

}

(...)

// Call compute sum on Target
_Cilk_offload compute_sum();

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Virtual Shared Memory uses special allocation

to manage data sharing at offload boundaries

Declare virtual shared data using _Cilk_shared allocation specifier

Allocate virtual dynamic shared data using these special functions:

Shared data copying occurs automatically around offload sections

• Memory is only synchronized on entry to or exit from an offload call

• Only modified data blocks are transferred between host and coprocessor

Allows transfer of C++ objects

• Pointers are transportable when they point to “shared” data addresses

Well-known methods can be used to synchronize access to shared data
and prevent data races within offloaded code

• E.g., locks, critical sections, etc.

This model is integrated with the Intel® Cilk™ Plus parallel extensions

36

Note: Not supported on Fortran - available for C/C++ only

_Offload_shared_malloc(), _Offload_shared_aligned_malloc(),
_Offload_shared_free(), _Offload_shared_aligned_free()

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Data sharing between host and coprocessor can
be enabled using this Intel® Cilk™ Plus syntax

37

What Syntax

Function int _Cilk_shared f(int x){ return x+1; }

Code emitted for host and target; may be called from either side

Global _Cilk_shared int x = 0;

Datum is visible on both sides

File/Function
static

static _Cilk_shared int x;

Datum visible on both sides, only to code within the file/function

Class class _Cilk_shared x {…};

Class methods, members and operators available on both sides

Pointer to
shared data

int _Cilk_shared *p;

p is local (not shared), can point to shared data

A shared
pointer

int *_Cilk_shared p;

p is shared; should only point at shared data

Entire blocks
of code

#pragma offload_attribute(push, _Cilk_shared)

#pragma offload_attribute(pop)

Mark entire files or blocks of code _Cilk_shared using this pragma

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus syntax can also specify the

offloading of computation to the coprocessor

38

Feature Example

Offloading a
function call

x = _Cilk_offload func(y);
func executes on coprocessor if possible

x = _Cilk_offload_to (card_num) func(y);
func must execute on specified coprocessor or an error occurs

Offloading
asynchronously

x = _Cilk_spawn _Cilk_offload func(y);
func executes on coprocessor; continuation available for stealing

Offloading a
parallel for-
loop

_Cilk_offload _Cilk_for(i=0; i<N; i++){
a[i] = b[i] + c[i];

}

Loop executes in parallel on coprocessor.
The loop is implicitly “un-inlined” as a function call.

39

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Options for Thread Parallelism

Intel® Math Kernel Library

OpenMP*

Intel® Threading Building Blocks

Intel® Cilk™ Plus

OpenCL*

Pthreads* and other threading libraries Programmer control

Ease of use / code

maintainability

Choice of unified programming to target Intel® Xeon® and Intel® Xeon Phi™ Architecture!

40

41

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism: OpenMP

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* on the Coprocessor

• The basics work just like on the host CPU

• For both native and offload models

• Need to specify -openmp

• There are 4 hardware thread contexts per core

• Need at least 2 x ncore threads for good performance

– For all except the most memory-bound workloads

– Often, 3x or 4x (number of available cores) is best

– Very different from hyperthreading on the host!

– -opt-threads-per-core=n advises compiler how many
threads to optimize for

• If you don’t saturate all available threads, be sure to
set KMP_AFFINITY to control thread distribution

42

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP defaults

• OMP_NUM_THREADS defaults to

• 1 x ncore for host (or 2x if hyperthreading enabled)

• 4 x ncore for native coprocessor applications

• 4 x (ncore-1) for offload applications

– one core is reserved for offload daemons and OS

• Defaults may be changed via environment variables
or via API calls on either the host or the coprocessor

43

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Target OpenMP environment (offload)

Use target-specific APIs to set for coprocessor target only, e.g.

omp_set_num_threads_target() (called from host)

omp_set_nested_target() etc

• Protect with #ifdef __INTEL_OFFLOAD, undefined with –no-offload

• Fortran: USE MIC_LIB and OMP_LIB C: #include <offload.h>

Or define MIC – specific versions of env vars using

MIC_ENV_PREFIX=MIC (no underscore)

• Values on MIC no longer default to values on host

• Set values specific to MIC using

export MIC_OMP_NUM_THREADS=120 (all cards)

export MIC_2_OMP_NUM_THREADS=180 for card #2, etc

export MIC_3_ENV=“OMP_NUM_THREADS=240|KMP_AFFINITY=balanced”

44

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Stack Sizes for Coprocessor

For the main thread, (thread 0), default stack limit is 12 MB

• In offloaded functions, stack is used for local or automatic arrays
and compiler temporaries

• To increase limit, export MIC_STACKSIZE (e.g. =100M)

– default unit is K (Kbytes)

• For native apps, use ulimit –s (default units are Kbytes)

For worker threads: default stack size is 4 MB

• Space only needed for those local variables or automatic arrays or
compiler temporaries for which each thread has a private copy

• To increase limit, export OMP_STACKSIZE=10M (or as needed)

• Or use dynamic allocation (may be less efficient)

Typical error message if stack limits exceeded:

offload error: process on the device 0 was terminated by SEGFAULT

45

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Thread Affinity Interface

Allows OpenMP threads to be bound to physical or logical cores

• export environment variable KMP_AFFINITY=

– physical use all physical cores before assigning threads to other
logical cores (other hardware thread contexts)

– compact assign threads to consecutive h/w contexts on same
physical core (eg to benefit from shared cache)

– scatter assign consecutive threads to different physical cores
(eg to maximize access to memory)

– balanced blend of compact & scatter
(currently only available for Intel® MIC Architecture)

• Helps optimize access to memory or cache

• Particularly important if all available h/w threads not used

– else some physical cores may be idle while others run multiple
threads

• See compiler documentation for (much) more detail

46

47

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism: TBB

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Threading Building Blocks

Widely used C++ template library for parallelism

С++ Library for parallel programming

• Takes care of managing multitasking

Runtime library

• Scalability to available number of threads

Cross-platform

• Windows, Linux, Mac OS* and others

http://threadingbuildingblocks.org

48

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Threading Building Blocks

49

Concurrent Containers

Common idioms for concurrent
access

- a scalable alternative serial
container with a lock around it

Miscellaneous

Thread-safe timers

Generic Parallel Algorithms

Efficient scalable way to exploit the
power of multi-core without having

to start from scratch

Task scheduler

The engine that empowers parallel

algorithms that employs task-
stealing to maximize concurrency

Synchronization Primitives

User-level and OS wrappers for

mutual exclusion, ranging from atomic
operations to several flavors of mutexes

and condition variables

Memory Allocation

Per-thread scalable memory manager and false-sharing free allocators

Threads

OS API wrappers

Thread Local Storage

Scalable implementation of thread-local data
that supports infinite number of TLS

TBB Flow Graph

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

parallel_for usage example
#include <tbb/blocked_range.h>

#include <tbb/parallel_for.h>

using namespace tbb;

class ChangeArray{

int* array;

public:

ChangeArray(int* a): array(a) {}

void operator()(const blocked_range<int>& r) const {

for (int i = r.begin(); i != r.end(); i++) {

Foo (array[i]);

}

}

};

int main (){

int a[n];

// initialize array here…

parallel_for (blocked_range<int>(0, n), ChangeArray(a));

return 0;

}

ChangeArray class defines

a for-loop body for parallel_for

blocked_range – TBB template

representing 1D iteration space

As usual with C++ function

objects the main work

is done inside operator()

A call to a template function

parallel_for<Range, Body>:

with arguments

Range � blocked_range

Body � ChangeArray

50

51

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism: MKL

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

52

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

MKL Usage Models on Intel® Xeon Phi™

Coprocessor

53

• Automatic Offload
– No code changes required

– Automatically uses both host and target

– Transparent data transfer and execution management

• Compiler Assisted Offload
– Explicit controls of data transfer and remote execution using compiler

offload pragmas/directives

– Can be used together with Automatic Offload

• Native Execution
– Uses the coprocessors as independent nodes

– Input data is copied to targets in advance

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

MKL Execution Models

54

Multicore Hosted

General purpose serial
and parallel computing

Offload

Codes with highly-

parallel phases

Many Core Hosted

Highly-parallel codes

Symmetric

Codes with balanced

needs

Multicore
(Intel® Xeon®)

Many-core
(Intel® Xeon Phi™)

Multicore Centric Many-Core Centric

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work Division Control in MKL Automatic Offload

55

Examples Notes

mkl_mic_set_Workdivision(
MKL_TARGET_MIC, 0, 0.5)

Offload 50% of computation only to the 1st

card.

Examples Notes

MKL_MIC_0_WORKDIVISION=0.5 Offload 50% of computation only to the 1st

card.

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

How to Use MKL with Compiler
Assisted Offload
• The same way you would offload any function call

to the coprocessor.

• An example in C:

56

#pragma offload target(mic) \
in(transa, transb, N, alpha, beta) \
in(A:length(matrix_elements)) \
in(B:length(matrix_elements)) \
in(C:length(matrix_elements)) \
out(C:length(matrix_elements) alloc_if(0))
{

sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,
&beta, C, &N);

}

57

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Xeon Phi™ Coprocessor Becomes
a Network Node

*

Intel® Xeon® Processor Intel® Xeon Phi™ Coprocessor

Virtual Network
Connection

Intel® Xeon® Processor Intel® Xeon Phi™ Coprocessor

Virtual Network
Connection

… …

Intel® Xeon Phi™ Architecture + Linux enables IP addressability

58

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Coprocessor only Programming Model

MPI ranks on Intel® Xeon
Phi™ coprocessor (only)

All messages into/out of
the coprocessors

Intel® Cilk™ Plus,
OpenMP*, Intel®

Threading Building Blocks,
Pthreads used directly
within MPI processes

CPUCPU

CPUCPU

Data

MPI

Data

N
e
tw

o
rk

Homogenous
network of many-
core CPUs

Build Intel Xeon Phi coprocessor binary using the
Intel® compiler

Upload the binary to the Intel Xeon Phi coprocessor

Run instances of the MPI application on Intel Xeon Phi
coprocessor nodes

59

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Symmetric Programming Model

MPI ranks on Intel® Xeon
Phi™ Architecture and host
CPUs

Messages to/from any core

Intel® Cilk™ Plus, OpenMP*,
Intel® Threading Building
Blocks, Pthreads* used
directly within MPI
processes

Heterogeneous
network of
homogeneous CPUs

CPUCPU

CPUCPU
C

Data

MPI

Data

N
e
tw

o
rk

Data

Data

Build binaries by using the resp. compilers targeting Intel
64 and Intel Xeon Phi Architecture

Upload the binary to the Intel Xeon Phi coprocessor

Run instances of the MPI application on different mixed
nodes

60

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

MPI+Offload Programming Model

MPI ranks on Intel®

Xeon® processors (only)

All messages into/out of
host CPUs

Offload models used to
accelerate MPI ranks

Intel® Cilk™ Plus,
OpenMP*, Intel®

Threading Building
Blocks, Pthreads* within
Intel® Xeon Phi™
coprocessor

Homogenous network
of heterogeneous
nodes

CPUCPU

CPUCPU

MPI

Offload

Offload

N
e
tw

o
rk

Data

Data

Build Intel® 64 executable with included offload by using
the Intel compiler

Run instances of the MPI application on the host, offloading
code onto coprocessor

Advantages of more cores and wider SIMD for certain
applications

61

62

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compare the event
timelines of two
communication profiles

Blue = computation
Red = communication

Chart showing how the
MPI processes interact

Intel® Trace Analyzer and Collector

63

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Trace Analyzer and Collector Overview

Intel® Trace Analyzer and Collector
helps the developer:

• Visualize and understand parallel application
behavior

• Evaluate profiling statistics and load
balancing

• Identify communication hotspots

Features

• Event-based approach

• Low overhead

• Excellent scalability

• Comparison of multiple profiles

• Powerful aggregation and filtering functions

• Fail-safe MPI tracing

• Provides API to instrument user code

• MPI correctness checking

• Idealizer

64

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Full tracing functionality on Intel® Xeon Phi™
coprocessor

65

66

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Collecting Hardware Performance
Data

Hardware counters and events

• 2 counters in core, most are thread specific

• 4 outside the core (uncore) that get no thread or core details

• See PMU documentation for a full list of events

Collection

• Invoke from Intel® VTune™ Amplifier XE

• If collecting more than 2 core events, select multi-run for more
precise results or the default multiplexed collection, all in one run

• Uncore events are limited to 4 at a time in a single run

• Uncore event sampling needs a source of PMU interrupts, e.g.
programming cores to CPU_CLK_UNHALTED

Output files

• Intel VTune Amplifier XE performance database

67

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® VTune™ Amplifier XE offers a rich GUI

Menu and
Tool bars

Analysis
Type

Viewpoint
currently being

used

Tabs within
each result
Tabs within
each result

Grid area

Stack Pane

Timeline area

Filter area

Current
grouping

68

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Double Click Function
to View Source

Intel® VTune™ Amplifier XE on Intel® Xeon

Phi™ coprocessors

Adjust Data Grouping

… (Partial list shown)

Filter by Module &
Other Controls

Filter
by Timeline Selection
(or by Grid Selection)

No Call Stacks Yet

69

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® VTune™ Amplifier XE displays event data
at function, source & assembly levels

Time on Source / Asm

Quickly scroll to hot spots.

Scroll Bar “Heat Map” is an

overview of hot spots

Click jump to scroll Asm

Quick Asm navigation:

Select source to highlight Asm

Right click for instruction

reference manual

Intel® VTune™ Amplifier XE 2013

70

71

Introduction

High-level overview of the Intel® Xeon Phi™ platform:
Hardware and Software

Intel Xeon Phi Coprocessor programming considerations:
Native or Offload

Performance and Thread Parallelism

MPI Programming Models

Tracing: Intel® Trace Analyzer and Collector

Profiling: Intel® Trace Analyzer and Collector

Conclusions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Conclusions: Intel® Xeon Phi™ Coprocessor

supports a variety of programming models

The familiar Intel development environment is available:

• Intel® Composer: C, C++ and Fortran Compilers

• OpenMP*

• Intel® MPI Library support for the Intel® Xeon Phi™ Coprocessor

– Use as an MPI node via TCP/IP or OFED

• Parallel Programming Models

– Intel® Threading Building Blocks (Intel® TBB)

– Intel® Cilk™ Plus

• Intel support for gdb on Intel Xeon Phi Coprocessor

• Intel Performance Libraries (e.g. Intel Math Kernel Library)

– Three versions: host-only, coprocessor-only, heterogeneous

• Intel® VTune™ Amplifier XE for performance analysis

• Standard runtime libraries, including pthreads*

72

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

One Stop Shop for:

Tools & Software Downloads

Getting Started Development Guides

Video Workshops, Tutorials, & Events

Code Samples & Case Studies

Articles, Forums, & Blogs

Associated Product Links

http://software.intel.com/mic-developer

Intel® Xeon Phi™ Coprocessor Developer site:
http://software.intel.com/mic-developer

73

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Resources

http://software.intel.com/mic-developer

• Developer’s Quick Start Guide

• Programming Overview

• New User Forum at

http://software.intel.com/en-us/forums/intel-many-integrated-core

http://software.intel.com/en-us/articles/programming-and-
compiling-for-intel-many-integrated-core-architecture

http://software.intel.com/en-us/articles/advanced-optimizations-
for-intel-mic-architecture

Intel® Composer XE 2013 for Linux* User and Reference Guides

Intel Premier Support https://premier.intel.com

74

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

76

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Offloaded data have some restrictions and

directives to channel their transfer

Offload data are limited to scalars, arrays, and “bitwise-
copyable” structs (C++) or derived types (Fortran)

• No structures with embedded pointers (or allocatable arrays)

• No C++ classes beyond the very simplest

• Fortran 2003 object constructs also off limits, mostly

• Data exclusive to the coprocessor has no restrictions

Offload data includes all scalars & named arrays in lexical
scope, which are copied both directions automatically

• IN, OUT, INOUT, NOCOPY are used to limit/channel copying

• Data not automatically transferred:

– Local buffers referenced by local pointers

– Global variables in functions called from the offloaded code

• Use IN/OUT/INOUT to specify these copies – use LENGTH

77

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

alloc_if() and free_if() provide a means to

manage coprocessor memory allocs

Both default to true: normally coprocessor variables are
created/destroyed with each offload

A common convention is to use these macros:

To allocate a variable and keep it for the next offload

To reuse that variable and keep it again:

To reuse one more time, then discard:

78

#define ALLOC alloc_if(1)
#define FREE free_if(1)
#define RETAIN free_if(0)
#define REUSE alloc_if(0)

#pragma offload target(mic) in(p:length(n) ALLOC RETAIN)

#pragma offload target(mic) in(p:length(n) REUSE RETAIN)

#pragma offload target(mic) in(p:length(n) REUSE FREE)

