
1

Real-time signal detection for pulsars and radio
transients using GPUs

W. Armour, M. Giles, A. Karastergiou and C. Williams.

University of Oxford.

15th July 2013

Background of GPUs

Why use GPUs ?

Influence and Take-up

• Oak Ridge Titan - 27.1 petaflops

• Based on 560,640 Opteron cores and

261,632 K20x GPU cores

• Significant reductions in floor space and

power consumption are achieved by using

a CPU/GPU architecture.

TOP 500 – 5 out of top 20 utilise GPUs

Adopters of GPUs

• Engineering (CFD/CAD…)

• Computational Finance

• Medical Imaging

• Oil (Seismic Exploration)

• Bioinformatics

• Targeted Drug Discovery

GPUs are now used in many areas of Scientific Computing

Courtesy of Leigh Lapworth, Rolls-Royce plc.

Accessibility of GPUs (Development Ecosystem)

• Thrust

• cuBLAS

• cuSPARSE

• cuFFT

• Nsight

• Mathematica

GPUs can be programmed in many different ways:

• MATLAB

• CUDA C/C++

• CUDA FORTRAN

• JCUDA (Java Bindings)

• pyCUDA

• OpenCL

• OpenACC

Latest Kepler based cards

• GeForce GTX 690 – 2x GK104 GPUs

• 18.7 GFLOP / watt

• Peak performance ~ 5.6 TFLOP/S

• Price point ~ £1000

• K10 – 2x GK104 GPU 2x1536 cores.

• Peak performance 4.6 TFLOP/S

• 20.4 GFLOP / watt

• Price point ~ £3000 (?)

Two Sandy Bridge Xeons (similar price) ~ 1 TFLOP/S

Kepler Streaming Multiprocessor (SMX) design

Compute cores

Load/Store

Special functions Texture units

User managed

cache

Schedulers

Kepler design

Latest Features - Dynamic Parallelism

A GPU job can launch

new GPU Jobs

Latest Features - Hyper-Q

Multiple CPU threads can run independent jobs on a

single GPU at the same time

Background of GPUs

Programming

Paradigm

Parallel granularity and data sharing.

• Each cuda core (SP) executes a sequential thread, in SIMT

(Single Instruction, Multiple Thread) fashion - all cores in the

same group execute the same instruction at the same time

(like SIMD).

• Threads are executed in groups of 32 – a warp.

• To hide high memory latency, warps are executed in a time-

multiplexed fashion - When one warp stalls on a memory

operation, the multiprocessor selects another ready warp

and switches to that one.

Parallel granularity and data sharing.

•Kernel launches a grid of

(3,2) thread blocks…

 Kernel<<< (3,2),(4,3) >>>(params)

•Each thread block

consists of (4,3) unique

threads.

Radio Astronomy

Radio Transients

and Pulsars

Radio Astronomy and Radio Transients

Pulsars – Magnetized, rotating

neutron stars. Emit synchrotron

radiation from the poles, e.g.

Crab Nebula

Quasars – Energetic region of a

distant galactic core, surrounding a

supermassive black hole

RRATS – Rotating Radio Transients. Short,

bright irregular radio pulses. Discovered 2006

Hester et al.

NASA and J. Bahcall (IAS)

Dispersion of Radio waves by the ISM

The interstellar medium (ISM) is the matter that exists between stars in a galaxy.

In warm regions of the ISM (~8000K) electrons are free and so can interact with and effect radio

waves that pass through it.

Haffner et al. 2003

The Dispersion Measure - DM

Radio Astronomy

De-dispersion

Experimental data

Most of the measured signals live in the noise of the apparatus.

f

t

Experimental data

Most of the measured signals live in the noise of the apparatus.

Hence frequency channels have to be “folded”

f

t

Brute force algorithm

Every DM is calculated to see if a signal is present.

• In a blind search for a signal many different dispersion

measures are calculated.

• This results in many data points in the (f,t) domain being used

multiple times for different dispersion searches.

• This allows for data reuse in a GPU algorithm.

t

f

All of this must happen in real-time i.e. The time taken to process all

of our data must not exceed the time taken to collect it

Processing several DM’s per thread

New Algorithm works in the DM - t space rather than frequency – time space.

DM

t

Thread block

size Region of DM space processed

by thread block

• Each thread processes a varying

number of time samples for a constant

dispersion measure.

• This ensures frequency - time data is

loaded into fast L1 cache.

• Using registers ensures very quick

memory access.

Optimising the parameterisation.

The GPU block size of the new algorithm can take on any size that is integer

multiples of the size of a “data chunk”…

DM DM

t
t

Exploiting the L1 cache / Shared Memory…

Each dispersion measure for a given frequency channel needs a shifted time value.

f

t

Constant DM’s with varying time.
Incrementing all of the registers at

every frequency step ensures a high

data reuse of the stored frequency

time data in the L1 cache or shared

memory.

Time binning

When scattering and dispersion effects

are high a radio signal can be spread

over multiple time samples, all having

the same frequency.
Signal Δt

Δf

It makes sense to add the values of

adjacent time data to increase the

signal to noise. This reduces the

amount of time samples to process at

higher DMs (also increases the step

size between DMs to achieve critical

sampling)
Signal Δt'

Δf

Code Execution Path

Code Execution Path

Code Execution Path

Code Execution Path

Code Execution Path

Code Execution Path

Code Execution Path

Allows for Multi-core (and Vector)

CPU usage along with PCIe and

GPU usage at the same time =

High system utilisation

De-dispersion results…

Results for LOFAR

data

(SKA Pathfinder)

Results…

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000

M
u

lt
ip

le
s

o
f

re
al

-t
im

e

Number of channels = total number of DMs with a maximum DM of 200

Comparison of different computing technologies

L1 cached GPU Algorithm NVIDIA C2070

Shared Memory GPU Algorithm NVIDIA C2070

Intel i7 2600K AVX (4 cores, 4.2 GHz)

Intel Xeon X7550 SSE (x4 = 32 cores, 2.7GHz)

Results…

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180

Ti
m

e
 in

 m
s

Cores used

Adding more CPU cores doesn’t help and is expensive!!
(2.7GHz Intel Xeon)

Results…

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000

M
u

lt
ip

le
s

o
f

re
al

-t
im

e

Number of channels = total number of DMs with Maximum DM = 100

Comparision of Fermi (C2070) to Kepler (GTX 680) GPUs
Preliminary results

Shared Memory GPU GTX 680

Shared Memory GPU C2070

Wide

Linear (Shared Memory GPU GTX 680)

Linear (Shared Memory GPU C2070)

Results…

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
s

Number of Accumulators

Data from three kernels using different memory paths

smem (L2 on)

smem (L2 off)

L1 (L2 on)

L1 (L2 off)

__ldg() (L2 on)

__ldg() (L2 off)

Conclusions

• GPU wins hands-down. At the moment (and for the foreseeable future)!

 Shared Memory Algorithm achieves 85% of peak

performance.

• OpenCL Algorithm, Dan Curran / Simon McIntosh-Smith (Bristol): Initial

results are currently 2x slower than NVIDIA CUDA Code but improving!

• NVIDIA promised a 3x performance increase moving from Fermi to

Kepler (GPU generations). We achieved a respectable 2.6x and

would expect this again moving from Kepler to Volta in 2015 - 2016.

A single Kepler K10 can process a 12Gb LOFAR data stream in real-

time using our latest algorithm.

Acknowledgments and Collaborators

University of Oxford

Mike Giles (Maths) – Cuda, GPU algorithms.

Aris Karastergiou (Physics) – ARTEMIS, Astrophysics, Experimental Work.

Kimon Zagkouris (Physics) – Astrophysics, Experimental Work.

Chris Williams (OeRC) – RFI Clipper, Data pipeline.

Ben Mort (OeRC) – Data Pipeline, pelican.

Fred Dulwich (OeRC) – Data Pipeline, pelican.

Stef Salvini (OeRC) – Data Pipeline, pelican.

Steve Roberts (Engineering) – Signal processing/detection algorithms.

University of Bristol

Dan Curran (Electrical Engineering) – OpenCL work.

Simon McIntosh Smith (Electrical Engineering) – OpenCL work.

University of Malta

Alessio Magro – MDSM

GPU de-dispersion : http://www.oerc.ox.ac.uk/research/wes

ARTEMIS : http://www.oerc.ox.ac.uk/research/artemis

http://www.oerc.ox.ac.uk/research/wes
http://www.oerc.ox.ac.uk/research/wes
http://www.oerc.ox.ac.uk/research/artemis
http://www.oerc.ox.ac.uk/research/artemis

