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Background of GPUs 

Why use GPUs ? 



Influence and Take-up 

• Oak Ridge Titan - 27.1 petaflops 

• Based on 560,640 Opteron cores and        

261,632 K20x GPU cores 

• Significant reductions in floor space and 

power consumption are achieved by using 

a CPU/GPU architecture. 

 

TOP 500 – 5 out of top 20 utilise GPUs  

 



Adopters of GPUs 

• Engineering (CFD/CAD…) 

• Computational Finance 

• Medical Imaging 

• Oil (Seismic Exploration) 

• Bioinformatics 

• Targeted Drug Discovery 

 

 

GPUs are now used in many areas of Scientific Computing 

Courtesy of Leigh Lapworth, Rolls-Royce plc. 



Accessibility of GPUs (Development Ecosystem) 

• Thrust 

• cuBLAS 

• cuSPARSE 

• cuFFT 

• Nsight 

• Mathematica 

 

 

GPUs can be programmed in many different ways: 

• MATLAB 

• CUDA C/C++ 

• CUDA FORTRAN 

• JCUDA (Java Bindings) 

• pyCUDA 

 

• OpenCL 

• OpenACC 

 

 



Latest Kepler based cards 

• GeForce GTX 690 – 2x GK104 GPUs 

• 18.7 GFLOP / watt 

• Peak performance ~ 5.6 TFLOP/S 

• Price point ~ £1000 

 

• K10 – 2x GK104 GPU 2x1536 cores. 

• Peak performance 4.6 TFLOP/S 

• 20.4 GFLOP / watt 

• Price point ~ £3000 (?)  

 

Two Sandy Bridge Xeons (similar price) ~ 1 TFLOP/S 



Kepler Streaming Multiprocessor (SMX) design 

Compute cores 

Load/Store 

Special functions Texture units 

User managed 

cache 

Schedulers 



Kepler design   



Latest Features - Dynamic Parallelism   

A GPU job can launch  

new GPU Jobs 



Latest Features - Hyper-Q  

Multiple CPU threads can run independent jobs on a 

single GPU at the same time 



Background of GPUs 

Programming 

Paradigm 



Parallel granularity and data sharing. 

• Each cuda core (SP) executes a sequential thread, in SIMT 

(Single Instruction, Multiple Thread) fashion - all cores in the 

same group execute the same instruction at the same time 

(like SIMD). 

 

• Threads are executed in groups of 32 – a warp.  

 

• To hide high memory latency, warps are executed in a time-

multiplexed fashion - When one warp stalls on a memory 

operation, the multiprocessor selects another ready warp 

and switches to that one. 



Parallel granularity and data sharing. 

•Kernel launches a grid of 

(3,2) thread blocks… 

 

 Kernel<<< (3,2),(4,3) >>>(params) 

 

•Each thread block 

consists of (4,3) unique 

threads. 



Radio Astronomy 

Radio Transients  

and Pulsars 



Radio Astronomy and Radio Transients 

Pulsars – Magnetized, rotating 

neutron stars. Emit  synchrotron 

radiation from the poles, e.g. 

Crab Nebula 

Quasars – Energetic region of a 

distant galactic core, surrounding a 

supermassive black hole 

 

RRATS – Rotating Radio Transients. Short, 

bright irregular radio pulses. Discovered 2006  

Hester et al. 

NASA and J. Bahcall (IAS) 



Dispersion of Radio waves by the ISM 

The interstellar medium (ISM) is the matter that exists between stars in a galaxy. 

In warm regions of the ISM (~8000K) electrons are free and so can interact with and effect radio 

waves that pass through it. 

  

Haffner et al. 2003 



The Dispersion Measure - DM 



Radio Astronomy 

De-dispersion 

 



Experimental data 

Most of the measured signals live in the noise of the apparatus. 
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Experimental data 

Most of the measured signals live in the noise of the apparatus. 

 

Hence frequency channels have to be “folded” 
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Brute force algorithm 

Every DM is calculated to see if a signal is present. 

• In a blind search for a signal many different dispersion 

measures are calculated. 

• This results in many data points in the (f,t) domain being used 

multiple times for different dispersion searches. 

• This allows for data reuse in a GPU algorithm. 
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All of this must happen in real-time i.e. The time taken to process all 

of our data must not exceed the time taken to collect it 



Processing several DM’s per thread 

New Algorithm works in the DM - t space rather than frequency – time space. 
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Thread block 

size Region of DM space processed 

by thread block 

• Each thread processes a varying 

number of time samples for a constant 

dispersion measure. 

 

• This ensures frequency - time data is 

loaded into fast L1 cache. 

 

• Using registers ensures very quick 

memory access. 

 

 



Optimising the parameterisation. 

The GPU block size of the new algorithm can take on any size that is integer 

multiples of the size of a “data chunk”… 

DM DM 
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Exploiting the L1 cache / Shared Memory… 

Each dispersion measure for a given frequency channel needs a shifted time value. 
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Constant DM’s with varying time. 
Incrementing all of the registers at 

every frequency step ensures a high 

data reuse of the stored frequency 

time data in the L1 cache or shared 

memory. 



Time binning 

When scattering and dispersion effects 

are high a radio signal can be spread 

over multiple time samples, all having 

the same frequency. 
Signal Δt 

Δf 

It makes sense to add the values of 

adjacent time data to increase the 

signal to noise. This reduces the 

amount of time samples to process at 

higher DMs (also increases the step 

size between DMs to achieve critical 

sampling) 
Signal Δt' 

Δf 



Code Execution Path 



Code Execution Path 



Code Execution Path 



Code Execution Path 



Code Execution Path 



Code Execution Path 



Code Execution Path 

Allows for Multi-core (and Vector) 

CPU usage along with PCIe and 

GPU usage at the same time =  

High system utilisation 



De-dispersion results… 

Results for LOFAR 

data 

(SKA Pathfinder) 

 



Results… 
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Number of channels = total number of DMs with a maximum DM of 200 

Comparison of different computing technologies 

L1 cached GPU Algorithm NVIDIA C2070

Shared Memory GPU Algorithm NVIDIA C2070

Intel i7 2600K AVX (4 cores, 4.2 GHz)

Intel Xeon X7550 SSE (x4 = 32 cores, 2.7GHz)



Results… 
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Cores used 

Adding more CPU cores doesn’t help and is expensive!! 
(2.7GHz Intel Xeon) 



Results… 
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Number of channels = total number of DMs with Maximum DM = 100 

Comparision of Fermi (C2070) to Kepler (GTX 680) GPUs 
Preliminary results 

Shared Memory GPU GTX 680

Shared Memory GPU C2070

Wide

Linear (Shared Memory GPU GTX 680)

Linear (Shared Memory GPU C2070)



Results… 
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Data from three kernels using different memory paths 

smem (L2 on)

smem (L2 off)

L1 (L2 on)
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Conclusions 

• GPU wins hands-down. At the moment (and for the foreseeable future)!  

  

 Shared Memory Algorithm achieves 85% of peak 

performance. 

 

• OpenCL Algorithm, Dan Curran / Simon McIntosh-Smith (Bristol): Initial 

results are currently 2x slower than NVIDIA CUDA Code but improving! 

 

• NVIDIA promised a 3x performance increase moving from Fermi to 

Kepler (GPU generations). We achieved a respectable 2.6x and 

would expect this again moving from Kepler to Volta in 2015 - 2016. 

 

A single Kepler K10 can process a 12Gb LOFAR data stream in real-

time using our latest algorithm.  
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GPU de-dispersion : http://www.oerc.ox.ac.uk/research/wes 

 

ARTEMIS              : http://www.oerc.ox.ac.uk/research/artemis 
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