Instrumentation of a Level-1 Track Trigger in the ATLAS detector for the High Luminosity LHC

Dr Francesca Pastore, Royal Holloway, University of London on behalf of the ATLAS Collaboration

Introduction

- HL-LHC in 2020: L=5x10³⁴cm⁻²s⁻¹ and 3ab⁻¹ of data per experiment
- Need lepton triggers at thresholds of pt~25 GeV
- But event rates: ~ x 5 and number of interactions per bunch crossing: $<\mu>\sim 120$

Current ATLAS L1 Trigger and upgrades

- Hardware L1: 40 MHz to 75 kHz, software L2 (Rol scheme): 3kHz, Event Filter: output rate: ~300 Hz
- L1: Coarse calorimeter and muon information, latency < 2.5µs
- Want to keep single lepton trigger rate below 20kHz
- During the long shut down of ~2018:
 - complete replacement of Inner Detector tracker
 - replace almost all of the on-detector FE electronics
 - FE not replaced: muon drift tubes → L1A ~ 200kHz and latency ~ 20µs

Benefits of Tracking at L1

- Reduce L1A rate (eg current HLT)
- Ensure objects are from Primary Vertex
- Reduce fake couple of leptons
- Possible track based isolation
- Added flexibility to trigger system

Option 1: L0/L1 trigger design using a Double Buffer Front-End Architecture

- L0: upgraded Calo+Muon triggers, 500kHz, latency < 6.4µs, builds Rol
- •L1: Track Trigger, final L1 Accept within 20µs

Bandwidth reduction: Bandwidth = $(100kHz + 500kHz \times 10\%)$ x event size = 150kHz x event size

→ 1.5 times bandwidth without track trigger

Schematic of FE readout configuration:

ABC130 chip Hybrid Chip Controller

Benefits:

- minor changes to new tracker design
- low momentum tracks
- isolation criteria possible

R3 data ABC to stave xfer

5713.035

2129.182

3733.763

4525.867

time ns

30000

602.361

7535

Results:

- For <µ>=200, L0A=300kHz, L1A=75kHz, R3=3kHz (fROI=1%)
- 160Mb/s link shared between R3 and L1 is optimum
- 98.5% of R3 data is received within 5.5µs
- separate buffers on the HCC for R3 and L1 (R3 prioritized)
- bandwidth required: 125 Mb/s (for <µ>=140, L0A=500kHz, L1A=200kHz, R3=50kHz, fROI=10%)

Option 2: Single hardware trigger level by using trigger layers in the new tracker

 filter high momentum tracks using doublet layer coincidences in closely spaced layers

• 2 local filtering methods studied, bandwidth reduction factor: 12-25

Cluster Size Method:

utopia design: strip sensors tilted by 10°

- cluster size is reconstructed on FE
- lower p_T tracks → charge sharing over several adjacent strips
- optimized cut: N ≤ 2

Offset Method:

Track trigger rates of order 1 MHz achieved for $p_T > 10-15$ GeV, with ~ 75-80% eff

Benefits:

- no majors changes to FE of subdetectors
- finds all ID tracks
- redundant information

Global track reconstruction:

azimuthal distance related to p_T

• hits from 2 or 3 layers combined, helix fitted and x² cut applied

Best is to combine Cluster Size and offset

will be done by associative memory

