
V.Ivanchenko, CERN & G4AI

18th Geant4 Collaboration Workshop
23-27 September 2013

Sevilla, Spain


Outline
 Fast mathematical functions
 Data vectors

Motivation from CPU profiling:
 significant contribution of standard library (log, exp,

sincos .. – decenting order)
 Significant contribution of data access methods for

cross section computations
MT migration required design change of data classes

Introduction


 Initially this class was created in order to provide

super fast values of frequently used functions of
integer arguments Z and A
 Z, A may vary from 1 to 512

With time number of G4Pow methods increased
 Additions were needed for

PreCompound/DeExcitation models and cross
scetions

 Fast computations with double arguments were also
added, in particular, for fast computing of cross
sections

G4Pow


 Currently it is G4ThreadLOcal singleton

 I would propose to make it global singleton
 Current methods with integer arguments:

Z13(G4int)
Z23(G4int)
logZ(G4int)
log10Z(G4int)
powZ(G4int, G4double)
factorial(G4int)
Logfactorial(G4int)

 Current methods with double arguments:
A13(G4double)
A23(G4double)
logA(G4double)
logX(G4double)
log10A(G4double)
expA(G4double)

G4Pow



Accuracy of G4Pow::logX
and G4Pow::expA

G4Pow::expA/std::exp - 1


Accuracy of G4Pow::A13


Danilo Piparo, Thomas Hauth, Vincenzo Innocente

developed VDT mathematical library
 Alternative to cmath
 May be preloaded and substitute standad library
 This is not very convinient from management point of

view
 In Geant4 9.6ref09 two new classes are added G4Log

and G4Exp
 These classes are extracted by me from VDT
 Were adapted to Geant4 platforms by Gabriele Cosmo

G4Log and G4Exp


Accuracy of G4Log and G4Exp


Std G4 VDT G4Pow

Log 8.97 4.91 5.19

Exp 13.93 1.95 1.34

A1/3 20.46 7.03 0.77

Z1/3 - - 0.01

CPU performance

Random number generator was used to select arguments of math functions
«background time» was subtracted


 Main data classes:
 G4PhysicsVector – was there from the beginning
 G4Physics2DVector – introduced for SeltzerBerger model for g4 9.5
 Now also used by muon models

 G4ElementData introduced for Geant4 9.6 to keep atomic data
 Livermore photo-electric
 Muon models
 NeutronXS

 For MT prototype these classes were developed as «splitted» –
cache was thread local, mail class shared

 For 10.0beta and just after a design iteration was done
 Splitted classes provide too many problems for MT
 Design was not elegant
 Now these classes are read-only in run time, no cache
 No CPU penalty when cache sub-classes were removed
 User code if needed may have tread local cache implementation

 This is not needed in many Geant4 cases

Data Classes Evolution


 G4PhysicsVector::Value(e) is one of the most frequently called

methods seen in the top of all profing results
 It calls bin location method
 In EM usually logarithmic vector is used
 Std::log was substituted by G4Pow::logX()

 A new method G4PhysicsVector::Value(e, idx) was introduced
as an alternative
 This method allows user code to have cache avoiding call to bin

location
 A new method G4PhysicsVector::SampleLinearX() was

introduced for cumulative functions providing linear sampling
of argument according to the distribution
 This aloows to remove doulicated code in different Geant4 classes

 The same updates were introduced in G4Physics2DVector

Recent Updates


Having read-only physics vectors is very convinient

for MT mode
 Before this migration there were difficulties in

debugging of Geant4 in MT mode
All classes based its internal data on G4ElementData

structures were easely migrated to MT providing
sharing these data between threads

Migration to MT


CPU effect of VDT and G4Pow math functions is

very significant,so for 10.0 we need:
 migrate all sensitive code (cross sections first of all) to
 G4Log, G4Exp, G4Pow::A13, G4Pow::A23

 If there are math functions with integer argumetrs
then migrate to
 G4Pow::Z13, G4Pow::Z23, G4Pow::logZ,G4Pow::factorial

Data structure classes redesign was an essential part
of MT migration
 The next step is to make G4PhysicsVector be free of

virtual methods

Summary and «to do»

	Update of PhysicsVectors and global functions
	Introduction
	G4Pow
	G4Pow
	Accuracy of G4Pow::logX and G4Pow::expA
	Accuracy of G4Pow::A13
	G4Log and G4Exp
	Accuracy of G4Log and G4Exp
	CPU performance
	Data Classes Evolution
	Recent Updates
	Migration to MT
	Summary and «to do»

