
V.Ivanchenko, CERN & G4AI

18th Geant4 Collaboration Workshop
23-27 September 2013

Sevilla, Spain

Outline
 Fast mathematical functions
 Data vectors

Motivation from CPU profiling:
 significant contribution of standard library (log, exp,

sincos .. – decenting order)
 Significant contribution of data access methods for

cross section computations
MT migration required design change of data classes

Introduction

 Initially this class was created in order to provide

super fast values of frequently used functions of
integer arguments Z and A
 Z, A may vary from 1 to 512

With time number of G4Pow methods increased
 Additions were needed for

PreCompound/DeExcitation models and cross
scetions

 Fast computations with double arguments were also
added, in particular, for fast computing of cross
sections

G4Pow

 Currently it is G4ThreadLOcal singleton

 I would propose to make it global singleton
 Current methods with integer arguments:

Z13(G4int)
Z23(G4int)
logZ(G4int)
log10Z(G4int)
powZ(G4int, G4double)
factorial(G4int)
Logfactorial(G4int)

 Current methods with double arguments:
A13(G4double)
A23(G4double)
logA(G4double)
logX(G4double)
log10A(G4double)
expA(G4double)

G4Pow

Accuracy of G4Pow::logX
and G4Pow::expA

G4Pow::expA/std::exp - 1

Accuracy of G4Pow::A13

Danilo Piparo, Thomas Hauth, Vincenzo Innocente

developed VDT mathematical library
 Alternative to cmath
 May be preloaded and substitute standad library
 This is not very convinient from management point of

view
 In Geant4 9.6ref09 two new classes are added G4Log

and G4Exp
 These classes are extracted by me from VDT
 Were adapted to Geant4 platforms by Gabriele Cosmo

G4Log and G4Exp

Accuracy of G4Log and G4Exp

Std G4 VDT G4Pow

Log 8.97 4.91 5.19

Exp 13.93 1.95 1.34

A1/3 20.46 7.03 0.77

Z1/3 - - 0.01

CPU performance

Random number generator was used to select arguments of math functions
«background time» was subtracted

 Main data classes:
 G4PhysicsVector – was there from the beginning
 G4Physics2DVector – introduced for SeltzerBerger model for g4 9.5
 Now also used by muon models

 G4ElementData introduced for Geant4 9.6 to keep atomic data
 Livermore photo-electric
 Muon models
 NeutronXS

 For MT prototype these classes were developed as «splitted» –
cache was thread local, mail class shared

 For 10.0beta and just after a design iteration was done
 Splitted classes provide too many problems for MT
 Design was not elegant
 Now these classes are read-only in run time, no cache
 No CPU penalty when cache sub-classes were removed
 User code if needed may have tread local cache implementation

 This is not needed in many Geant4 cases

Data Classes Evolution

 G4PhysicsVector::Value(e) is one of the most frequently called

methods seen in the top of all profing results
 It calls bin location method
 In EM usually logarithmic vector is used
 Std::log was substituted by G4Pow::logX()

 A new method G4PhysicsVector::Value(e, idx) was introduced
as an alternative
 This method allows user code to have cache avoiding call to bin

location
 A new method G4PhysicsVector::SampleLinearX() was

introduced for cumulative functions providing linear sampling
of argument according to the distribution
 This aloows to remove doulicated code in different Geant4 classes

 The same updates were introduced in G4Physics2DVector

Recent Updates

Having read-only physics vectors is very convinient

for MT mode
 Before this migration there were difficulties in

debugging of Geant4 in MT mode
All classes based its internal data on G4ElementData

structures were easely migrated to MT providing
sharing these data between threads

Migration to MT

CPU effect of VDT and G4Pow math functions is

very significant,so for 10.0 we need:
 migrate all sensitive code (cross sections first of all) to
 G4Log, G4Exp, G4Pow::A13, G4Pow::A23

 If there are math functions with integer argumetrs
then migrate to
 G4Pow::Z13, G4Pow::Z23, G4Pow::logZ,G4Pow::factorial

Data structure classes redesign was an essential part
of MT migration
 The next step is to make G4PhysicsVector be free of

virtual methods

Summary and «to do»

	Update of PhysicsVectors and global functions
	Introduction
	G4Pow
	G4Pow
	Accuracy of G4Pow::logX and G4Pow::expA
	Accuracy of G4Pow::A13
	G4Log and G4Exp
	Accuracy of G4Log and G4Exp
	CPU performance
	Data Classes Evolution
	Recent Updates
	Migration to MT
	Summary and «to do»

