Geometry Recent & ongoing developments

Gabriele Cosmo – CERN PH/SFT for the Geant4 Geometry Working Group

Outline

Developments/fixes in the last year
 Introduced in release 9.6 and patches

Real Planned for release 10.0 and ongoing ...

Currently under development and scheduled for inclusion in the December release

Fixes/updates to solids - 1

- Refined protection for potential cases of infinite loop in *DistanceToIn(p,v)* of *G4SubtractionSolid*
 - Return computed distance instead of zero and provide more descriptive information when issuing warning
- GR Fixed calculation of sin(alpha) from cosine and tangent in G4Para::SurfaceNormal()
- Revised values of delta in *G4Torus*, to account for precision loss in calculating radius *pt* Reordered a few computation for better FP accuracy
- Real Fixed cases of hang-ups in G4ExtrudedSolid on 32-bits platforms
 - CR Due to *G4TessellatedSolid* and *G4SurfVoxelizer*, caused by accessing bitmask arrays with negative indexes 9.6.p01

9.5.p02

9.5.p02

Fixes/updates to solids - 2

- Fix *in G4ExtrudedSolid::IsSameLine()* to use the perpendicular distance to a line when deciding, and not the y-intercept difference. 9.6.p02
 - R Issue responsible for a problem observed in ATLAS in a Boolean subtraction composition
- A Fix in G4Polycone::GetPointOnCone() for cases of shape with decreasing Z. Fixes cases of false report for overlaps detection
 - Added check with exception in constructor for polycone with rInner > rOuter for the same Z; corrected conversion from generic construct

9.6.p02 & 9.6.ref07

- Fix in calculation of normal in *G4Tet::DistanceToOut(p,v,..)* and *SurfaceNormal(p)*
- Fixed problem in *G4TessellatedSolid* with navigation in solids with concave surfaces
 9.6.p02

18th Geant4 Collaboration Meeting, Sevilla, Spain

9.6.p02

More fixes/updates

- Removed deprecated BREPs module, NURBS code from solids and scorer base classes
 - R Part of general cleanup for the major release
- Provide method *GetGlobalExitNormal()* in *G4Navigator* to be used in place of *GetLocalExitNormal()* by optical processes
 9.5.p02
 - Compute normals also for replicas
 - \bigcirc Problem report <u>#1300</u>
- Introduced new class G4ChargeState
 to hold charge, spin, magnetic moment
- Added new messenger class G4GlobalMagFieldMessenger
 - Defining UI commands for creating/deleting the global uniform magnetic field and activating/inactivating it according to the set field value
- Added G4Ellipsoid among solids enabled for parameterisation 18th Geant4 Collaboration Meeting, Sevilla, Spain 24 September 2013

9.6.ref08

10.0.beta

New UI commands for overlaps checks

Archived UI checks through grid/cylinder lines. Replaced with calls to built-in overlaps checking based on random points located on surface

/geometry/test/run
to start overlaps checking recursively through the volumes tree

10.0.beta

- /geometry/test/tolerance [double] [unit]
 to define tolerance by which overlaps should not be reported. Default is '0'
- /geometry/test/verbosity [bool]

to set verbosity mode. Default is 'true'

/geometry/test/resolution [int]

to establish the number of points on surface to be generated and checked for each volume. Default is '10000'

/geometry/test/recursion_start [int]

to set the starting depth level in the volumes tree from where checking overlaps. Default is level '0'

/geometry/test/recursion_depth [int]

to set the total depth in the volume tree for checking overlaps. Default is '-1', which means checking the whole tree

 \(\mathbf{geometry/test/maximum_errors [int]\)
 to fix the threshold of maximum errors to report for wach volume. Default is '1'
 \(\mathbf{equ:field:1}\)
 \(\mathbf{field:1}\)
 \(

More developments included in release 9.6

Rew implementation of G4TessellatedSolid

- R Derived from the Unified Solids library development
- R Providing 3D spatial optimisation for fast localisation of facets for intersection
- R Huge speedups (factor thousands), depending on shape complexity

Real Implementation of precise ComputeSafety() in navigation for EM use

- Refined implementation of alternative Computesafety() for use by physics processes (mainly EM) for measuring the exact safety value, not limited by voxels boundaries
- Review of current status & open issues in parallel session 4b

Yet expected for release 10.0 ...

Identification of first/last step in a volume for curved tracks
 Feature currently possible only for linear track

- Requires to be extended also for curved tracks in magnetic field
- Refinalise adaptation of relevant classes for multi-threading
 - R Introduction of "work-spaces" for better handling of allocated memory by threads
 - Review in parallel session 4b; talk by J.Apostolakis
- Regration of Unified Solids library shapes
 - As optional component, with wrappers for the implemented shapes
 - Splitting of polycone and polyhedra for simple/generic constructs (onlyincreasing/also-decreasing Z)
 - CR Extension of GDML schema

Unified Solids library on-going development

Implementation of a common library for shapes (CSG and specific) with Root geometry

- Work started in the context of the AIDA EV Project
- Types and common interface defined
- Bridge classes defined and implemented for both Geant4 and Root
- Solids implemented so far: box, orb, sphere (+sphere section), tube (+cylindrical section), cone (+conical section), simple, generic & arbitrary trapezoid, tetrahedron, new Multi-Union solid, tessellated solid, polycone, polyhedra
- Currently tackling: extruded solid
- Comprehensive testing suite defined, deployed and extended
- See presentation by Marek Gayer in parallel session 4b

18th Geant4 Collaboration Meeting, Sevilla, Spain

3

R

R

3

24 September 2013

Thanks!

Status of development of the Unified Solids library	Marek GAYER
Seville, Spain	17:00 - 17:45
Optimizing geometry routines Sandro Christian WENZEL for (SIMD)vector particle tracking: A status report	
Developments for multi-threading: work-spaces	John APOSTOLAKIS
Seville, Spain	18:05 - 18:25
Use of precise safety by EM processes & open issues	
Seville, Spain	
Discussion	
Seville, Spain	18:45 - 19:00