
MT Issues Affecting Hadronics after
10.0

Michael H. Kelsey

SLAC GEANT4 Group

GEANT4 Collaboration Meeting

26 Sep 2013



MT Had After 10.0

Introduction

Hadronics framework, including all processes and models, is

functioning properly in multithreaded (MT) environment for

10.0 release

Three major areas required for “re-”optimization

• Reducing per-thread memory footprint (size and churn)

• Isolating large computed tables from static shared tables

• Handling per-thread initialization from kernel

Michael H. Kelsey G4 CM, Plenary 7B 2



MT Had After 10.0

Code Modifications

Substantial automated and manual modifications to code

required

• Conversion of static local variables to “TLS” (thread-local

storage) pointers

• File-scoping (anonymous namespace) of hardcoded numeric arrays

• Separation of static/shared data from per-thread active classes

• Beginning-of-job initialization of some shared objects

Some changes may increase memory use or churn

(new/delete cycles)

Possible marginal increase in CPU vs. 9.6 base release

Want to re-optimize hadronic models following modifications

required for MT compatibility

Michael H. Kelsey G4 CM, Plenary 7B 3



MT Had After 10.0

Memory Footprint

Threads have limited block of local memory available

Hardcoded arrays should be moved to (“unlimited”) shared

memory, replacing within-function declarations of “const” to

file-scoped (anonymous namespace) “const” (equivalent to

static)

Variable names need not be changed, and do not need class

or namespace prefixes

Function-local buffers, especially vectors, should be moved

to per-thread class data members, with clear() and resize()

calls for initialization

Michael H. Kelsey G4 CM, Plenary 7B 4



MT Had After 10.0

Eliminating “TLS” Code

Automated code processing for MT prototype converted

function-local static variables to pointers with “ G4MT TLS ”

suffix

static G4ThreadLocal G4ThreeVector *pvec_G4MT_TLS_ = 0;

if (!pvec_G4MT_TLS_) pvec_G4MT_TLS_ = new G4ThreeVector;

G4ThreeVector &pvec = *pvec_G4MT_TLS_;

1. If TLS object is constant, use static-const and make it

shared

2. Move to class data member, if class has thread-lifetime

3. Leave as is

4. Convert to local (non-static) variable (causes memory

churn!)

Michael H. Kelsey G4 CM, Plenary 7B 5



MT Had After 10.0

Memory Trade-offs

Balance between footprint (“memory used by thread”) and

churn (“memory needed during run”)

Memory churn happens as small objects are created, used,

then destroyed asyncronously

Small blocks of free memory are left unusable by later, larger

allocation needs

• Eliminate temporary buffers (function-local ob-

jects/arrays/vectors)

• If class has thread-lifetime, use data member buffers

• Pass output objects into functions as non-const refer-

ences

Michael H. Kelsey G4 CM, Plenary 7B 6



MT Had After 10.0

Cross Section Tables

Cross-section tables most prominent part of “shared mem-

ory” in multithreaded environment

Many tables are truly static/constant numeric values

• Not pre-initialized or hard-coded arrays

• Loaded from data files at initialization time, or on-demand

Others computed on-demand using material and track

properties

Keeping both in same data structure requires frequent

writing from threads to shared memory: locks (mutexes)

impair performance

Michael H. Kelsey G4 CM, Plenary 7B 7



MT Had After 10.0

Thread Initialization

For EM processes, run-by-run initialization must be done in

both master thread (for shared, static tables) and in worker

threads (computed tables)

At start of each run, kernel calls PreparePhysicsTable,

BuildPhysicsTable for each process

“Master” and “Worker” versions to separate shared from

thread-local initialization

No interface for model-specific initialization, needed for

hadronics

Michael H. Kelsey G4 CM, Plenary 7B 8



MT Had After 10.0

Processes and Models

Hadronic processes are primarily “shells” or “wrappers”

• Translate between kernel objects (G4Tracks) and hadronic objects

(G4HadProjectile, G4HadSecondary, G4Fragment, etc.)

• Detailed physics encapsulated in models

Processes generally do not own their models (RDM, Stopping

are exceptions)

• Model passed to G4HadronicProcess::RegisterMe in physics list

• Stored in registry with info about particles, targets, energy range,

etc.

• At interaction, process asks registry for applicable model

Hadronic process cannot use BuildPhysicsTable interface

to initialize “its” model(s)

Michael H. Kelsey G4 CM, Plenary 7B 9



MT Had After 10.0

Initializing Models

Currently, BERT is initialized by hand with call to static

void G4CascadeInterface::Initialize()

Hard-coded into kernel beginning-of-run code (bad! deep

dependency)

Proposal

Add non-static void G4HadronicInteraction::Initialize()

{;} and InitializeForWorker() { Initialize(); }

Models implement as needed to pre-create shared or large

objects

Extend RegisterMe to call model->Initialize() or

InitializeForWorker() as appropriate

Michael H. Kelsey G4 CM, Plenary 7B 10



MT Had After 10.0

Summary

Significant progress: all hadronics now run under MT jobs

Reduce thread-local (TLS) variables by making class data

members (use mutable where necessary)

Move in-function hardcoded arrays to file scope (namespace

{...})

Create needed shared-memory objects in

model::Initialize()

See MT Developers’ TWiki for more information, details

Michael H. Kelsey G4 CM, Plenary 7B 11


