



# A GPU/CPU implementation for imaging and therapy applications

Julien Bert<sup>1</sup>, Hector Perez-Ponce<sup>2</sup>, Sébastien Jan<sup>3</sup>, Ziad El Bitar<sup>4</sup>, Pierre Gueth<sup>5</sup>, Vesna Cuplov<sup>3</sup>, Hocine Chekatt<sup>4</sup>, Didier Benoit<sup>6</sup>, David Sarrut<sup>5</sup>, Yannick Boursier<sup>2</sup>, David Brasse<sup>4</sup>, Irène Buvat<sup>6</sup>, Christian Morel<sup>2</sup>, and Dimitris Visvikis<sup>1</sup>

<sup>1</sup> LaTIM, UMR1101 INSERM, CHRU Brest, France

- <sup>2</sup> CPPM, Aix-Marseille Université, CNRS/IN2P3, France
- <sup>3</sup> DSV/I2BM/SHFJ, Commissariat à l'Energie Atomique, Orsay, France
- <sup>4</sup> IPHC, UMR7178 CNRS/IN2P3, Strasbourg, France
- <sup>5</sup> CREATIS, CNRS UMR5220, INSERM U630, Université Lyon I, Centre Léon Bérard, Lyon, France
- <sup>6</sup> IMNC, CNRS UMR8165, Universités Paris 7 and Paris 11, Orsay, France

### Introduction



### GATE

- Open source project (GPL)
- Monte Carlo simulation platform based on Geant4<sup>2</sup>
- Medical imaging and particle therapy

http://www.opengatecollaboration.org



### Introduction



- Open source project (GPL)
- Monte Carlo simulation platform based on Geant4<sup>2</sup>
- Medical imaging and particle therapy

http://www.opengatecollaboration.org





отім



#### Monte Carlo simulation

- Very computationally demanding research and clinical environment application
- Computer cluster financial burden and availability issue



### Objective



#### Graphics Processing Unit (GPU)

- High processing performance at a reduced cost

- Used GPU for Monte Carlo simulation<sup>1-3</sup>
- Medical applications within GATE software
- Enhance GATE computational efficiency





A small cluster on a single conventional workstation

### Objective



#### Graphics Processing Unit (GPU)

- High processing performance at a reduced cost

- Used GPU for Monte Carlo simulation<sup>1-3</sup>
- Medical applications within GATE software
- Enhance GATE computational efficiency



A small cluster on a single conventional workstation



#### Hybrid GATE

- Possible to track particles alternatively on GPU or CPU
- No limitation on simulation possibilities





French ANR-09-COSI-004 february 2010 – march 2013 (36 months)

### hybrid GATE

feasibility studies to speed up GATE simulation by using CPU/GPU

#### Partners:

LaTIM - D.Visvikis (+1) - PL IPHC - D. Brasse (+3) CPPM - C. Morel (+2) CREATIS - D. Sarrut (+3) IMNC - I. Buvat (+2) SHFJ - S. Jan (+1)

http://hgate.univ-brest.fr





#### GPU architecture





Kernel (program code)

| SM 0 |      |    |    |    |  |  |  |  |
|------|------|----|----|----|--|--|--|--|
|      | SP   | SP | SP | SP |  |  |  |  |
|      | SP   | SP | SP | SP |  |  |  |  |
| SM 1 | SM 1 |    |    |    |  |  |  |  |
|      | SP   | SP | SP | SP |  |  |  |  |
|      | SP   | SP | SP | SP |  |  |  |  |
| SM 2 | SM 2 |    |    |    |  |  |  |  |
|      |      |    |    |    |  |  |  |  |

Streaming processor (SP)



NVIDIA GTX680 1536 SPs @ 1 GHz



#### GPU architecture





Kernel (program code)

| SM 0 |      |    |    |    |  |  |  |  |
|------|------|----|----|----|--|--|--|--|
|      | SP   | SP | SP | SP |  |  |  |  |
|      | SP   | SP | SP | SP |  |  |  |  |
| SM 1 |      |    |    |    |  |  |  |  |
|      | SP   | SP | SP | SP |  |  |  |  |
|      | SP   | SP | SP | SP |  |  |  |  |
| SM 2 | SM 2 |    |    |    |  |  |  |  |
|      |      |    |    |    |  |  |  |  |

Streaming processor (SP)



IS36 SPs @ I GHz



Thousands of particles are simulated in parallel



Monte Carlo simulation on GPU



yes





Particles buffer

Still active

particles?

••• (

Navigation Kernel

(one step)

exit

no



#### Photon' navigation kernel

- I. Read particle' properties energy, position, etc
- 2. Determine the particle location geometry, fetch material information
- 3. Compute cross sections Compton, photoelectric and Rayleigh
- 4. Compute the next interaction distance Including geometry boundary
- 5. Determine the next discrete process
- Move the particle Check world boundary
- 7. Resolve the discrete process Compton, photoelectric and Rayleigh

#### Monte Carlo simulation on GPU



#### GPU framework<sup>1</sup> based on Geant4

- Geant4 code on GPU (C++ → C → CUDA)
- Pseudo random number generator
- Electromagnetic effects for photon
- Voxelized geometry navigation



Full agreement between GPU code and Geant4

 Bert J et al.
Geant4-based Monte Carlo simulations on GPU for medical applications
Phys. Med. Biol. 58 (2013) 5593-5611





Cross sections from standard model





#### Cross sections from Livermore model



Rayleigh scattering

#### Compton scattering

LOTIM



### GPU module for GATE

- Based on this generic GPU framework
- Specific GPU module for medical applications
- Tracking particles inside a voxelized volume (PET, SPECT, CT, and Radiotherapy)
- Voxelized source of particle (PET and SPECT)

### GPU module for GATE

- Based on this generic GPU framework
- Specific GPU module for medical applications
- Tracking particles inside a voxelized volume (PET, SPECT, CT, and Radiotherapy)
- Voxelized source of particle (PET and SPECT)

#### GATE





### PET imaging



#### Source + phantom

- Voxelized phantom from NCAT (thorax)
- 46x63x128 voxels of 4<sup>3</sup> mm<sup>3</sup>
- Tumor in the left lung
- Activity maps (tumor contrast 3:1)
- Back-to-back photon gamma (511 keV)

#### Detector

- Philips GEMINI PET scanner

#### Setup



Voxelized activity maps



PET system modeling

### PET imaging



#### Simulation

- Fictitious tracking<sup>1</sup>
- Photoelectric effect and Compton scattering
- Acquisition for 10 min

#### **Evaluation study**

- Run time to track particles (source+phantom)
- Phantom phase space
- Store coincidences into sinogram

#### **GATE** simulation



CPU Intel Core i7 - 3.4 GHz GPU NVIDIA GTX580 512 cores 1.23 GHz

### Transmission imaging



#### Source

- Cone beam (7° aperture angle)
- Photons (mono energy at 80 keV)

#### Phantom

- Voxelized phantom derived from CT (head & neck)
- 126x126x111 voxels of 2<sup>3</sup> mm<sup>3</sup>

#### Detector

- Fictive flat panel (counting particles per pixel)
- 300x300 pixels of I<sup>2</sup> mm<sup>2</sup>

#### Setup



### Transmission imaging



#### Simulation

- Regular voxelized navigator (based on Geant4)
- Photoelectric effect and Compton scattering
- Acquisition for 500 million emitted photons

#### Evaluation study

- Run time to track particles (phantom)
- Phantom phase space
- 2D projection

#### GATE simulation



CPU Intel Core i7 - 3.4 GHz GPU NVIDIA GTX580 512 cores 1.23 GHz

### PET imaging



#### Run time to track particles:



#### Phase spaces:



#### Coincidence sinograms:





Profiles

### Transmission imaging



#### Run time to track particles:



#### 2D projections



GATE



GATE-GPU

#### Phase spaces:





Profiles

#### 14

### Transmission imaging

Setup

Photon

source

GPU





~12 days

CPU Intel Core i7 - 3.4 GHz GPU NVIDIA GTX580 512 cores 1.23 GHz

### **Conclusion** and further work

# 

#### Conclusion

- GPU modules within GATE: For PET application x61 faster For CBCT application x77 faster
- Both modules will be released in GATE v7 (in 2014)



February 2010 – march 2013

### Conclusion and further work



#### Physics processes

- Handle secondary particles
- Effects for optical photons
- Effects for electrons
- Effects for protons
- Dose deposition (Track Length Estimator)



Secondary particles on GPU

#### Navigation

- Electron, proton navigation
- Analytical and hierarchical geometry
- Complex geometry (Mesh)
- Optimizations (Octree)
- Hybrid navigator (analytical/voxelized)



Analytical navigator on GPU

### Targeting different bio-medical applications (imaging and particle therapy)

### Conclusion and further work



Transmission imaging





Intra-operative radiotherapy



Brachytherapy



Electrons - Energy distribution behind a water box (beam of 6 MeV)







### Thank for your attention

Julien Bert<sup>1</sup>, Hector Perez-Ponce<sup>2</sup>, Sébastien Jan<sup>3</sup>, Ziad El Bitar<sup>4</sup>, Pierre Gueth<sup>5</sup>, Vesna Cuplov<sup>3</sup>, Hocine Chekatt<sup>4</sup>, Didier Benoit<sup>6</sup>, David Sarrut<sup>5</sup>, Yannick Boursier<sup>2</sup>, David Brasse<sup>4</sup>, Irène Buvat<sup>6</sup>, Christian Morel<sup>2</sup>, and Dimitris Visvikis<sup>1</sup>

#### <sup>1</sup> LaTIM, UMR 1101 INSERM, CHRU Brest, France

- <sup>2</sup> CPPM, Aix-Marseille Université, CNRS/IN2P3, France
- <sup>3</sup> DSV/I2BM/SHFJ, Commissariat à l'Energie Atomique, Orsay, France
- <sup>4</sup> IPHC, UMR7178 CNRS/IN2P3, Strasbourg, France
- <sup>5</sup> CREATIS, CNRS UMR5220, INSERM U630, Université Lyon 1, Centre Léon Bérard, Lyon, France
- <sup>6</sup> IMNC, CNRS UMR8165, Universités Paris 7 and Paris 11, Orsay, France



This work is supported by the French National Research Agency