Hadronic Showers

Alberto Ribon CERN PH/SFT

Geant4 Collaboration Meeting, Seville, 26 September 2013

Outline

This talk gives the status of hadronic shower simulations in Geant4. Not yet available to us the latest comparisons with LHC collision data; some results from CALICE.

- Introduction
- Calorimeter test-beam and observables
- Some recent results from CALICE test-beam
- FTFP_BERT physics list
- Simplified calorimeters results
- Outlook

Introduction

The simulation of hadronic showers (set of particles produced by a single hadron impinging on a block of matter, e.g. a calorimeter) is an important ingredient for the simulation of jets

- The other ingredients are:
 - the Monte Carlo event generator
 - the experiment-specific aspects: geometry, digitization, pile-up
- Jets (collimated sprays of hadrons) are produced by strong (QCD) or electroweak (hadronic decays of τ / W / Z / H) interactions
- Jets can be part of the signal and/or the background
 - multi-jets in the same event is typical in hadron colliders as LHC, but it is also frequent in high-energy e+-e- linear colliders as ILC/CLIC
- For ILC/CLIC, the simulation of jets is essential for the optimal design of the detector (even more than traditionally because of the particle flow...)
- For ATLAS and CMS, the simulation of jets is now important for physics analysis

Simulations vs LHC collision data (1/2) Isolated tracks (charged hadrons)

Simulations vs LHC collision data (2/2) Jets and missing transverse energy

Calo jets

JPT jets

PF jets

Calorimeter test-beams

Up to now, the most challenging requirements for Geant4 hadronic physics were, and still are, all coming from calorimeter test-beams

- Dominated by LHC test-beams in the last ~ 10 15 years
 - ATLAS TileCal (Fe-Sci), ATLAS HEC (Cu-LAr), ATLAS Combined (Pb-LAr + Fe-Sci)
 - CMS ECAL (PbWO4) + HCAL (Brass-Sci)
- Now being complemented and refined by the CALICE test-beams, which offer unprecedented details
 - Completed: Fe-Sci , W-Sci
 - On-going/planned: Fe-Gas , W-Gas

Most of the development in Geant4 hadronic physics has been & will be driven (not tuned: thin-target data is used for that!) by the need to improve the agreement between simulated ⁶ hadronic showers and test-beam data

Calorimeter observables

• Energy response

- Very important for jet energy scale for traditional calorimeter jets

- Currently described with an accuracy of \sim few %
- Sensitive to nearly all (string model, cascade, precompound/evaporation)

Energy resolution

- Important for jet energy resolution and di-jet mass resolution (e.g. hadronic decays of W, Z, H) for traditional calorimeter jets
- Currently described with an accuracy of $\,\sim 10-20~\%$
- Sensitive to nearly all (string model, cascade, precompound/evaporation)

Lateral shower shape

- Essential for the particle flow approach
- Relevant also in general for cluster identification, jet structure, isolation requirements, and jet overlaps
- Currently described with an accuracy of $\sim 10-20$ %
- Sensitive mostly to the intra-nuclear cascade, a bit less on the string model
- Longitudinal shower shape
 - Important for particle identification, jet-calibration, punch-through
 - Currently described with an accuracy of $\,\sim 10-20$ %
 - Sensitive mostly to forward physics (elastic, quasi-elastic, diffraction)

CALICE Fe-Sci : longitudinal shower profile

CALICE W-Sci : response to hadrons

CALICE WAHCAL: Tungsten/Scintillator - visible Energy

CALICE: Time Structure of Hadronic Showers (1/2)

CALICE: Time Structure of Hadronic Showers (2/2)

- Radial dependence of mean time of hits:
 - Good agreement for steel (a few 100 ps, which is comparable to systematics)
 - For tungsten: HP / QBBC necessary, QGSP_BERT overestimates late contributions, which matter most at larger radii (extended "neutron cloud" vs rather collimated em-subshowers and relativistic hadrons)

Geant4 simulation of hadronic showers

History of production physics lists used by ATLAS and CMS

- LHEP : the first available, fast but very rough. Still used by LHCb for LHC data analysis up to now
- **QGSP** : better energy response and resolution; but too compact showers (for the longitudinal shape, worse than LHEP)
- QGSP_BERT : even better energy response and resolution, and wider showers; longitudinal showers improved by including quasi-elastic; but unphysical kinks due to the transition between models (BERT & LEP). Used by ATLAS for LHC data analysis up to now
- QGSP_FTFP_BERT : smoother transition, replacing LEP with FTFP in the intermediate region. Used by CMS for LHC data analysis up to now
- FTFP_BERT : our current recommended physics list; not yet used for large productions up to now

Evolution of FTFP_BERT between G4 9.4 - 9.6

- **FTF** improved (new tuning + diffraction : in G4 9.6) and extended (anti-baryons nucleus interactions : in G4 9.5)
- **BERT improved** (internal nucleon-nucleon cross sections in G4 9.6 ; angular distributions in G4 9.5) **and extended** (gamma-nucleon + nuclear capture at rest : in G4 9.6)
- Improved nucleon-nucleus inelastic cross sections (replaced Wellisch xsec with Barashenkov-Glauber xsec : in G4 9.6)
- New nuclear capture at rest and lepton-nuclear (replaced CHIPS with FTF/Preco + BERT)
- New treatment of hyperons, anti-hyperons, anti-protons, light-ions and light anti-ions (replaced CHIPS or LEP with FTF/Preco (+BERT for hyperons, or +BIC for light ions); kept CHIPS xsec for hyperons and anti-hyperons)

Pion showers in simplified calorimeters

Note: when data is shown, these are rescaled ATLAS test-beam data (obtained with an old version of Geant4, before G4 9.4)

FTFP_BERT response

FTFP_BERT energy resolution

E^{beam} (GeV)

E_{kin} (GeV)

FTFP_BERT lateral shower shape

FTFP_BERT longitudinal shower shape

FTFP_BERT after G4 9.6

- Latest tuning of FTF (included in G4 9.6.ref07)
 - Increased significantly the probability to produce delta-isobars
 - Switched off hadron-nucleus and nucleus-nucleus diffraction

has a significant impact on hadronic showers; still evaluating its thin-target motivations...

- Future developments
 - Fritiof re-scattering with Bertini (vs. Binary)
 - Fritiof code revision & consolidation
 - Bertini coupled with G4 Precompound/evaporation
 - Making Bertini more physically realistic
 - Revision of the transition energy interval between FTFP and BERT
 - Try to use Binary Cascade for low-energy (< ~1-2 GeV) nucleons
 ¹⁹
 Most of this is ready, but likely needs careful re-tuning...

A word of caution on our strategy

- It happened that physics-motivated improvements to a model produced worse thin-target data comparisons
 - For example Bertini : is this due to an old tuning?
- It happened that a new tuning of a model improved some thin-target data comparisons, but worsen others
 - For example latest Fritiof tuning : shall we look at the showers?^{\circ}

Summary and Outlook

- The most important use of Geant4 hadronic physics in HEP is the simulation of hadronic showers, needed to simulate jets
- Significant progress in the simulation of hadronic showers over the years, driven mainly by calorimeter test-beams
- **FTFP_BERT** the current recommended physics list
 - Recent improvements in lateral hadronic shower shapes
 - Wider showers in **Fe** and **Cu**
 - Energy resolution too optimistic (at least at high energies)
 - Stable energy response and longitudinal shower shapes
 - Need new comparisons with (LHC & CALICE) test-beam data
- Looking forward to the next LPCC Detector Simulation Workshop (early 2014)
 - Latest comparisons of simulations with LHC data
 - Simulations with FTFP_BERT and recent versions of Geant4