Hadronic Cross-Sections

Witek Pokorski, Alberto Ribon
26.09.2013

Content

@ current set of cross sections for physics lists

@ iImprovements in the cross section
implementation

® conclusion

FTFP/QGSP_BERT

Replaced Wellisch cross sections with ones (in
G4 9.6)
Replaced CHIPS with Bertini + Fritiof&Preco (in G4
9.6)

@ Kept the total cross sections
Replaced CHIPS final-state for inelastic
interactions with Bertini + Fritiof&Preco (in G4 9.5)

® Kept the same cross sections
Replaced CHIPS (xsection & final-state) interactions with
Fritiof&Preco (in G4 9.6)

@ cross section
Replaced LEP (xsection & final-state) interactions with Binary +

Fritiof&Preco (in G4 9.5)

] cross sections
Added light interactions with Fritiof&Preco (in G4 9.5)
] cross sections

Things to improve

@ bad CPU performance of CHIPS-derived cross-sections
@ bad design of CHIPS-derived cross-section

@ enormous use of 'statics’
@ use of 'IsIso/ElementApplicable’ method

@ in my opinion should be entirely removed
(redesigned)

@ use (calculation) of ‘per isotope’ cross section when
the precision is much lower then the dependance on N

Bad performance of
CHIPS-derived code

@ redundant and multiple checks (for particle type, etc)

@ looping through the cache with no 'break’ when the
entry is found

@ very heavy calculation
@ could be approximated
@ use of fast log, etc

@ redundant operations

Bad design

@ enormous use of ‘statics’
@ completely not needed
@ creating problems for MT
@ obscure code to implement cache

@ inefficient, error-prone

G4bool

G4ElectroNuclearCrossSection: :IsIsoApplicable(
const G4DynamicParticle* aParticle, G4int /*Z=*/,
G4int /*A*/, const G4Element*, const G4Materialx)

G4ébool result = false;

G4ElectroNuclearCross
Se C'I' i O n e (apiiticte->?etbefinition() == G4Electron::ElectronDefinition())

if (aParticle->GetDefinition() == G4Positron::PositronDefinition())
result = true;
return result;

G4double
G4ElectroNuclearCrossSection: :GetIsoCrossSection(
const G4DynamicParticle* aPart,
G4int ZZ, G4int AA,
const G4Isotope*, const G4Element*, const G4Materialw)

static const G4int nE=336; // !! 1If you change this, change it in GetFunctions() (*.hh) !!
static const G4int mL=nE-1;

static const G4double EMi=2.0612; // Minimum -~ =~ ~ ° -

static const G4double EMa=50000.; // Maximum Many OF fhose repeafed in
static const G4double 1EMi=std::log(EMi); //

static const G4double 1EMa=std::log(EMa); // several mefhods O'F the class
static const G4double dlnE=(lEMa-lEMi)/mL; //)

static const G4double alop=1./137.036/3.14159265; //coef. for the calculated functions (Ee>50000.)
static const G4double mel=0.5109989; // Mass of the electron in MeV

static const G4double lmel=std::log(mel); // Log of the electron mass

// *** Begin of the Associative memory for acceleration of the cross section calculations

static std::vector <G4int> colN; // Vector of N for calculated nucleus (isotop)

static std::vector <G4int> colz; // Vector of Z for calculated nucleus (isotop)

static std::vector <G4int> coOlF; // Vector of Last StartPosition in the Ji-function tables
static std::vector <G4double> coOlTH; // Vector of the energy thresholds for the eA->eX reactions
static std::vector <G4double> colH; // Vector of HighEnergyCoefficients (functional calculations)
// *** End of Static Definitions (Associative Memory) *==

- - -

const G4double Energy = aPart->GetKineticEnergy()/MeV; // Energy of the electron

const G4int targetAtomicNumber = AA;

const G4int targZ = ZZ;

const G4int targN = targetAtomicNumber-targZ; // €€ Get isotops (can change initial A)

if (Energy<=EMi) return 0.; // Energy is below the minimum energy in the table

G4int PDG=aPart->GetDefinition()->GetPDGEncoding();
if (PDG == 11 || PDG == -11) // 88 Now only for elec Complefely useleSS CheCk
{

(Mis)use of
Is(...)Applicable method

@ called before each call to ‘get cross section’

method (!!)

G4bool
G4ElectroNuclearCrossSection: :IsIsoApplicable(
const G4DynamicParticle* aParticle, G4int /*zZ*/,
G4int /*A*/, const G4Element*, const G4Material=*)
{
G4ébool result = false;
if (aParticle->GetDefinition() == G4Electron::ElectronDefinition())
result = true;

if (aParticle->GetDefinition() == G4Positron::PositronDefinition())
result = true;
return result;

}

@ these checks are really not needed!

@ cross section is called for the particle you have

assigned it to

@ if any check needed it should be at

initialization

8

Is(...)Applicable needed?

@ only current use to have IsIso/ElementApplicable is to check
for energy range if two cross sections are ‘glued’ together

@ if cross section used in the whole energy range (most of
the cases) the method returns only true

@ proposal: get rid of Is(..)Applicable method
@ easy to redQSign in : :GetCrossSection

@ if a cross section does not cover the whole energy range and
needs to be glued with another one, it can be handled with a

‘wrapper’ cross-section (calling two different cross-sections
behind)

Per isotope vs per
element

@ per isotope cross section means that we need check
every time Z and N, and calculate it

@ in case of CHIPS cross section there is a huge CPU
penalty for it

@ per element cross section means that it depends only on
Z (we take average N)

@ huge (5 times!!!) gain in speed
@ we loose in accuracy, but is it relevant?

@ in most (all HEP?) cases no!

10

Gamma nuclear XS

Inelastic cross section (barn) as a functions of log10(E/MeV) Inelastic cross section (barn) as a functions of log10(E/MeV)
[[hha

Entnes
Mean

RMS

| Entnes
| Mean

isotope
element

isotope

element
Cu

IFI]I

.IIIIIIITTIYTIITIIIIII

-
-
-
-
-
-
-
-
-
-
-
-

-

.

Inelastic cross section (barn) as a functions of log10(E/MeV) Inelastic cross section (barn) as a functions of log10(E/MeV)

3

| Entnes | Entnes
| Mean gl I | Mean

]I

:14][TT!

isotope

element W

isotope
element

[

”Pll‘]ll IILII]\H‘ 1

I”I]IITII.
'IT]| 1T

rTriTT
'

IIUI\H.

-
-

.
-,

Electronuclear XS

Inelastic cross section (barn) as a functions of log10(E/MeV) Inelastic cross section (barn) as a functions of log10(E/MeV)

hhd : hhd
Entnes 800 | Entnes , 800
Mean 52 | Mean 5.161

Rwu;/w 1.315 RMS 1.339

isotope Vg] isotope
element element

Si ? Cu

'lillllllllllllil: llLllllllll A 'lllllllljlllllil“

0 1 4 5 6 7 -1 0 1 4 5 6 7

Inelastic cross section (barn) as a functions of log10(E/MeV) Inelastic cross section (barn) as a functions of log10(E/MeV)
hhd hhd

Entnes 800 Entnes s 800
Mean / 5074
R;S' 1.388

ILRRAR|

1|T1T-'

Mean / 5.066
RMS 1.392

isotope
element

isotope
element

HH‘[HI’ITHH

RRR!

[T"H [l':'ITI'l 7‘[‘1;

Pb

o
e o
e
"

o
-

0.005 =

LlllllllL/l/lllll' 'lllllllljlllllil“ o'-lllllllllL/l"lllll' 'lllllllljlllllil“
0 1 2 4 5 6 7 -1 0 1 2 4 5 6 7

I

"ITTTI"' T I'T'l‘”‘ ["u‘l'” l*‘l T'TI TT”‘I‘” I
T

S

For reference: gamma-
nuclear validation

gamma Cu — X p (45 deg) gamma Cu — X p (90 deg) gamma Cu — X p (135 deqg)

- Bertini

— CHIPS
A exp.data

ub Mel ' sr
[g 1
(ub MeV' ' sa)

U

==
&
>
L
5 3
2|
#
E
<
%

o | dE a0
d'c/dE dQ

<

DU]
Kinetic Energy [MeV) Kinetic Energy [MeV)

13

Cleanup of CHIPS XS

@ major clean up of gamma- and electro-nuclear cross
sections

@ no more statics
@ removed all redundant checks
@ per element calculation
@ in simplified calorimeter from 0.6% CPU to 0.1%
@ moved to ‘IsElementApplicable’

@ all ‘automatic’ migration to MT could be removed

14

Plan

review the implementation of all cross sections

get rid of not needed 'statics’ (especially in former
CHIPS code)

remove checks for particle from Is(...)Applicable
methods

move from per isotope to per element cross sections
where it is justified (everywhere for HEP?)

' revise the hadronic framework to eventually get rid
of Is(..)Applicable methods?

15

Conclusion

thanks to V. Uzhinski, A. Galloyan and V. Grichine new (better)
cross sections added to physics lists

significant improvement in CPU performance of electro- and
gamma-nuclear XS

@ 5-fold for electro-nuclear in simplified calorimeter
@ clean up and reorganization of the code done

@ 'per isotope’ replaced by ‘per element’

plan to do the same with other cross-section

proposal fo re-discuss the hadronic cross-section framework to
improve the performance

16

Factory approach to
cross-sections

@® extended functionality of
G4CrossSectionDataSetRegistry

@ responsible for instantiating cross sections
@ user should never ‘new’ cross section object

@ registry (singleton) provides the method
GetCrossSectionDataSet(const G4String& name)

@ unique cross-sections objects (for a give cross
section) shared across the application

17

