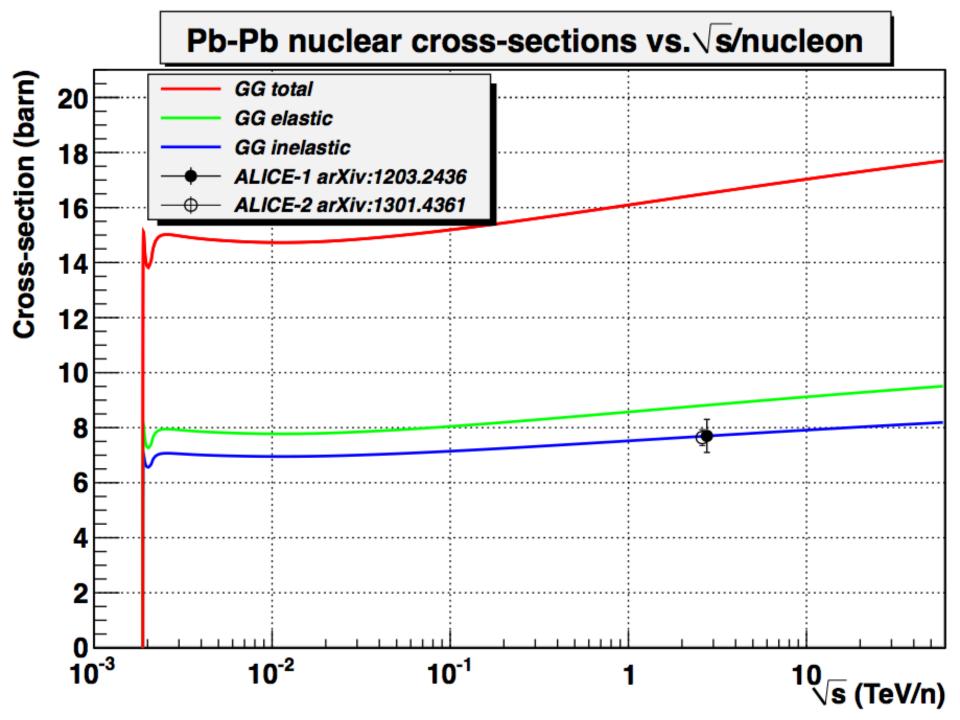
The Frontiers of Geant4 Hadronic Physics

Dennis Wright Geant4 Collaboration Meeting 26 September 2013

Where Do We Go From Here?

- Most Geant4 hadronic models are mature
 - maintenance, validation, tuning still required
 - clean-up, extensions and speed optimizations remain important
- Physics of the LHC seems well-covered by Geant4 up to about 1 TeV
 - unless higher energy running turns up some surprises
 - generators cover the very high energies and the new particles
- So what physics should we add?

Neutrino Scattering (1)


- Needed for:
 - next generation dark matter experiments (e.g. SuperCDMS)
 - high-intensity experiments (LBNE)
 - Hyper-Kamiokande
 - any experiment for which the irreducible neutrino background is a concern
- Geant4 currently not equipped to do this
 - FLUKA is
 - GENIE already has an extensive code base for this

Neutrino Scattering (2)

- Options:
 - write an interface to GENIE
 - GENIE is a C++ neutrino scattering code
 - currently used as a generator
 - Fermi gas model of nucleus
 - approached GENIE people to see if they agree
 - write native Geant4 code
 - better nuclear models
 - already have a virtual photon interface can be generalized to W and Z
 - substantial amount of work

Nucleus-nucleus Elastic Scattering

- Geant4 has never had this in a physics list
- Code exists now for a few years
 - model : G4NuclNuclDiffuseElastic (50 MeV < E < TeV)
 - cross sections: G4GGNuclNuclCrossSections (0.1 MeV < E < TeV)
 - could add to physics list
- What do we gain?
 - is there much data ?
 - do physics results change much?
 - need validations, sanity checks
- Look at cross sections vs. energy compared to inelastic

Nuclear Physics

- Huge area of physics
- Untouched in Geant4
 - except for RDM, neutronHP, photon evaporation
 - mainly because it's not important for HEP
 - what about other user communities?
- Many requests for specific reactions
 - precompound, deexcitation and cascade models can "fake it" but can't do precise work
- Can implement as theory- or data-driven
 - help from nuclear theorist would be nice

What Else ?

- spin physics
- interactions of c- b-mesons with nuclei
- hyper-nuclear physics