Validation of Geant4 Proton Scattering - A CERN Summer Student Project -

Sacha Schwarz

Institute for Theoretical Physics University of Berne

^b UNIVERSITÄT BERN

b

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS September 26, 2013 18th Geant4 Collaboration Meeting

> Supervised by Vladimir Ivantchenko

Outline

- 2 A bit about Theory
- 3 MSCP Validation Test

4 Some Results

Objectives

Task: Implement new test on scattering of hadrons allowing to validate combined electromagnetic and hadronic models for elastic scattering.

- Development of a Geant4 test application
- Deployment of the software as a part of the Geant4 testing infrastructure

Multiple Scattering in Geant4

Due to repeated scattering on atoms, charged particles get deflected when traversing matter.

Different EM Algorithms

- Urban Model (opt3)
 - Based on Lewis Theory of MSC and phenomenological approximations
- Wenzel-VI Model (opt0)
 - Multiple scattering for small $\boldsymbol{\theta}$
 - Single scattering for large θ
 - Wentzel cross section

Different HAD Algorithms

- Chips Elastic Model (elastic)
- Hadron Elastic Diffuse Model (DElastic)
- Glauber Hadron Elastic Model (HElastic)

Experimental Setup

- Target as stack of foils
- Scan plane is positioned 100 cm downstream of the target front
- Protons were detected by small silicon diode positioned across the beam by means of a lead screw
- Measure transverse position $x_i \Rightarrow \theta_i = \arctan\left(\frac{x_i}{z_E}\right)$, where $z_E = z_D z_0$ effective detector distance

Typical Setup

Multiple Coulomb Scattering of 160 MeV protons

What is provided by the paper from Gottschalk et al.?

- In order to measure MSC of low energy protons in matter, characteristic angles, θ_M and θ_0 , are presented for 14 different materials
- Targets ranged from thin (negligible energy loss) to very thick (greater than the mean proton range)
- Data fitting with Moliere scattering distribution

$$f(\theta) = \frac{1}{2\pi\theta_M^2} \frac{1}{2} \left[f^{(0)}(\theta') + \frac{f^{(1)}(\theta')}{B} + \frac{f^{(2)}(\theta')}{B^2} \right],\tag{1}$$

where $\theta' = \frac{\theta}{\sqrt{2}\theta_M}$ and $\theta_M^2 = \frac{\chi_c^2 B}{2}$ • Data fitting with Gaussian Distribution

$$f(\theta) = \frac{1}{2\pi\theta_0^2} \exp\left[-\frac{\theta^2}{2\theta_0^2}\right]$$
(2)

• Data fitting compared with Highland formula

$$\theta_{H} = \frac{14.1 \text{MeV}}{pv} z \sqrt{\frac{L}{L_{R}}} \left[1 + \frac{1}{9} \log_{10} \left(\frac{L}{L_{R}} \right) \right]$$
(3)

Simulation Setup

- Particle gun produces one proton per event
- On a target scattered protons are measured by a scoring plane (SD)
- 10^5 events per run, one run per thickness value
- Angle distributions are fitted with Gaussian in $\pm 2.5\sigma$ range

Chart Flow

Scattering Angle Fitting

Since the fitting was performed with a Gaussian, the range limitation like $\pm 2.5\sigma$ becomes important cause of non-Gaussian behaviour at the angle distribution tails

Gaussian Fit

Some Results

Electromagnetic PhysicsList Comparison

Adding hadron elastic PhysicsList yields improvements

Sacha Schwarz (University of Berne)

But shows an overestimating for more dense materials in the case of opt3

Hadron Elastic PhysicsList Comparison

No difference between elastic, DElastic and HElastic for thin targets

Sacha Schwarz (University of Berne)

But slightly differ between each other for thicker targets

Summary I

χ^2 values	opt3				opt0			
Material	no	el	DE	HE	no	el	DE	HE
Beryllium	6.04	3.60	3.53	4.08	11.51	4.45	4.03	3.87
Polystyrene	28.63	24.20	24.29	23.64	23.98	19.60	18.60	18.52
Carbon	6.36	5.92	5.61	5.89	1.91	1.67	1.73	1.79
Lexan	16.57	15.82	16.12	16.10	3.85	4.01	3.94	3.95
Nylon	1.70	1.60	1.64	1.57	3.85	4.01	3.94	3.95
Lucite	19.64	19.04	19.83	19.32	4.41	4.25	4.02	3.98
Teflon	10.49	4.71	3.81	3.40	13.61	5.80	4.54	4.38
Aluminium	10.29	6.68	6.04	6.23	11.56	6.73	5.58	5.82
Copper	13.41	7.74	7.66	7.71	26.05	13.35	11.99	11.26
Zinc	2.75	2.88	2.87	2.85	0.14	0.13	0.13	0.12
Brass	43.16	78.21	74.34	91.35	69.89	22.30	24.96	26.08
Tin	2.10	1.92	1.93	1.92	0.29	0.34	0.34	0.33
Lead	2.97	5.49	5.29	4.89	24.11	14.62	15.78	15.56
Uranium	5.60	9.61	9.95	9.08	76.45	52.52	54.98	53.61

Summary II (RangeFactor = 0.04)

χ^2 values	opt3				opt0			
Material	no	el	DE	HE	no	el	DE	HE
Beryllium	6.03	3.60	3.51	4.09	11.51	4.45	4.03	3.87
Polystyrene	28.63	24.21	24.30	23.65	23.98	19.60	18.60	18.52
Carbon	6.36	5.92	5.61	5.92	1.91	1.67	1.73	1.79
Lexan	16.58	15.84	16.03	16.09	3.95	4.01	3.94	3.85
Nylon	1.70	1.60	1.67	1.54	0.12	0.12	0.13	0.13
Lucite	19.46	19.04	19.82	19.32	4.41	4.25	4.02	3.98
Teflon	10.49	4.70	3.82	3.40	13.61	5.80	4.54	4.38
Aluminium	10.26	6.70	6.03	6.22	11.56	6.73	5.58	5.82
Copper	13.45	7.68	7.63	7.72	26.05	13.35	12.00	11.26
Zinc	2.74	2.89	2.88	2.86	0.14	0.13	0.13	0.12
Brass	43.09	78.34	74.73	89.93	69.89	22.22	24.90	26.10
Tin	2.10	1.92	1.93	1.92	0.29	0.34	0.34	0.33
Lead	2.97	5.49	5.21	4.91	15.60	9.49	9.63	9.65
Uranium	5.61	9.42	9.72	9.22	39.41	23.49	24.23	23.50

Summary III (StepLimit = 1mm)

χ^2 values	opt3				opt0			
Material	no	el	DE	HE	no	el	DE	HE
Beryllium	7.52	3.09	2.76	2.98	3.39	2.08	1.91	2.80
Polystyrene	26.95	21.66	21.31	20.73	11.13	8.50	8.24	7.87
Carbon	3.86	3.66	3.79	3.71	1.54	1.48	1.47	1.55
Lexan	11.79	11.09	11.30	11.14	3.24	3.10	3.23	3.23
Nylon	0.98	0.92	0.94	0.96	0.09	0.10	0.09	0.09
Lucite	11.76	12.65	12.38	12.35	3.58	3.33	2.93	3.05
Teflon	11.46	4.31	3.20	2.86	6.27	1.50	1.02	0.89
Aluminium	8.86	4.88	4.11	3.96	5.20	2.55	2.40	2.18
Copper	12.15	6.75	5.99	5.57	15.48	6.64	6.18	5.44
Zinc	2.75	2.88	2.87	2.85	0.14	0.13	0.13	0.12
Brass	39.70	65.41	76.72	85.82	42.45	23.65	22.52	28.14
Tin	2.10	1.92	1.93	1.92	0.29	0.34	0.34	0.33
Lead	2.85	5.62	4.84	5.55	11.19	4.72	5.36	5.28
Uranium	7.01	13.44	11.63	12.64	32.35	18.15	20.04	19.43

Conclusion

Conclusion

- O Physics:
 - Better agreements for opt3 than for opt0
 - Hadron elastic effects contributes essentially to the peak for thick targets
 - Changing hadron elastic PhysicsLists yields only slightly differences (largest χ^2 value for default PhysicsList *elastic*)
 - Step limitation dependence
 - There is a room to improve Geant4 models
- 2 Software:
 - New test is created and committed to repository
 - Validation tool offers possibility to change PhysicsLists, list of materials, step limitations and cuts
 - Approximated run times: $t_{default} \approx 3h$, $t_{RangeFactor} \approx t_{StepSizeLimit} \approx 5h$

Thank you for your attention! Questions?

BACKUP SLIDES

Air Runs

- For each new setup at least one 'air' scan was taken to determine the target out beam profile at the diode
- Each $\theta_0^{\rm exp}$ then was subtracted in quadrature by $\theta_0^{\rm air}$ coming from the corresponding air scan
- air scans are usually used to correct several thin target runs
- additional effects due to multiple scattering of protons in air, beam widths and beam divergence
 - \Rightarrow No air scans
 - \Rightarrow Use vacuum as world volume material

Effective Detector Distance

As a small correction to the source to detector distance, we need to know the effective origin of protons coming from a target in which they have multiple scattered

- The same analysis is done as presented by Gottschalk et al.
- Characteristic transverse kick projected to the scoring plane from layer of target:

$$y_0(Z) = 14.1 \operatorname{MeV}\left(1 + \frac{1}{9} \log_{10} \frac{t}{L_R}\right) \left[\int_0^{z_{\max}} \left(\frac{Z - z}{pv}\right)^2 \frac{\rho}{L_R} dz\right]^{\frac{1}{2}}$$

$$Z_{1} = L$$

$$Z_{2,3} = Z_{1} + c_{2,3} \frac{y_{01}}{\theta_{0}}, \quad c_{i} = \begin{cases} 10 & i = 2\\ 20 & i = 3 \end{cases}$$

$$z_{0} = \frac{y_{03}Z_{2} - y_{02}Z_{3}}{y_{03} - y_{02}}, \quad \theta_{0} = \frac{y_{03} - y_{02}}{Z_{3} - Z_{2}}$$

1

Effective Detector Distance Derivation

$$\frac{y_{02}}{Z_2 - z_0} = \frac{y_{03}}{Z_3 - z_0} \quad \Rightarrow \quad z_0 = \frac{y_{03}Z_2 - y_{02}Z_3}{y_{03} - y_{02}}$$

Charachteristic Angle Distribution for Polystyrene

Sacha Schwarz (University of Berne)

