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What’s new in Geant4 Version 10?	


• Next version of Geant4 (December 2013) will be a major 
release	


•  Incudes several improvements	

-  All categories will include important improvements	


• Main highlight is Multi-threading capabilities	

-  Introduce event-level parallelism	


	




4 

Geant4 MT: from prototypes to production	


G4MT 9.4. (2011) G4MT 9.5 
(2012) 

G4 
10.0.beta 

G4 10.0 
(Dec. 2013) 

G4 10 
series 

(2014+) 

•  Proof of principle	

•  Identify objects to 

be shared	

•  First testing	


•  MT code 
integrated into 
G4	


•  API re-design	

•  Example migration	

•  Further testing	

•  First optimizations	


•  Public release	

•  All functionalities 

ported to MT	


•  Further 
Refinements	


•  Focus on further 
performance 
improvements	
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Why parallelism? (a reminder)	


•  Increase frequency of CPU causes 
increase of power needs	


•  Reached plateau around 2005	

•  No more increase in CPU frequency	


•  However number of transistors /$ you 
can buy continues to grow 	

•  Multi/May-core era	


•  Note: quantity memory you can buy 
with same $ scales slower	


•  Expect: 	

1.  Many core (double/2yrs?)	

2.  Single core performance will not 

increase as we were used to	

3.  Less memory/core	


•  New software models need to take 
these into account: increase 
parallelism	
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In brief	


•  Modern CPU architectures: need to introduce parallelism	

•  Memory quantity and its access will limit number of concurrent 

processes running on single chip	

•  Add parallelism in the application code	


•  Geant4 needs back-compatibility with user code and simple 
approach (physicists != computer scientists)	


•  Events are independent: each event can be simulated separately	

•  Multi-threading for event level parallelism is the natural choice
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References	


•  Very good Gene Cooperman’s presentations at 16th Collaboration 
Workshop:	

•  https://indico.fnal.gov/sessionDisplay.py?

sessionId=12&confId=4535#20110920	

•  Gene, as primary author of MT in Geant4 explains there very important 

details on thread-safety	

•  See also:	


•  X. Dong et al. Euro-Par 2010 - Parallel Processing Lecture Notes in 
Computer Science Volume 6272, 2010, pp 287-303	


•  X. Dong et al. Xin Dong et al 2012 J. Phys.: Conf. Ser. 396 052029	

•  J. Apostolakis st al. : Upcoming SNA-MC2013 conference contribution	


•  Let me give you some notes, sorry I will not be so precise as Gene, 
but I’ll do my best	


	




Threading 101	
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What is a thread?	


Sequential application	




10 

What is a thread?	


Sequential application: start N (cores/CPUs) copies of application if fits in 
memory	
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What is a thread?	


MT Application: single application starts threads. For G4: application (master) 
controls workers that do simulation, no memory sharing now, each worker is a 
copy of the application	
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What is a thread?	


Memory reduction: introduce shared objects, memory of N threads is less than 
memory used by N copies of application	
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Data race	


Consider a function that reads and writes a shared resource (a 
global variable in this example).	


double	  aSharedVariable;	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  return	  result;	  
}	  
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Data race	


Now consider two threads that execute at the same time the 
function. Concurrent access to the shared resource	

	


	  	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  return	  result;	  
}	  

Thread1 
	  	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  return	  result;	  
}	  

Thread2 

double	  aSharedVariable;	  
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Data race	


result is a local variable, exists in each thread separately not a  
problem, T1 starts arrives here and then is halted	

	


	  	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  return	  result;	  
}	  

Thread1 
	  	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  return	  result;	  
}	  

Thread2 

double	  aSharedVariable;	  



16 

Data race	


Now T2 starts and arrives here, the shared resource value is not 
yet updated, wrong behavior	

 

	  	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  return	  result;	  
}	  

Thread1 
	  	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  return	  result;	  
}	  

Thread2 

double	  aSharedVariable;	  
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Data race	


Use mutex / locks to create a barrier. T2 will not start until T1 reaches UnLock	

Significantly reduces performances (general rule in G4, not allowed in methods 
called during the event loop)	

	


	  	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  Lock(&mutex);	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  UnLock(&mutex);	  
	  	  	  	  	  return	  result;	  
}	  

Thread1 
	  	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  Lock(&mutex);	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  UnLock(&mutex);	  
	  	  	  	  	  return	  result;	  
}	  

Thread2 

double	  aSharedVariable;	  
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Data race: TLS	


•  Does aSahredVariable needs to be shared between threads?	

•  if not,  minimal change required, each thread has its own copy	

•  No memory performances, some CPU penalty	


•  General rule in G4: do not use unless really necessary	

	


double	  __thread	  aSahredVariable;	  	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  return	  result;	  
}	  

Thread1 
	  double	  __thread	  aSahredVariable;	  
	  
int	  SomeFunction()	  {	  
	  	  	  	  	  int	  result	  =	  0;	  
	  	  	  	  	  if	  (	  aShredVariable	  >	  0	  )	  {	  

	  result	  =	  aSharedVariable;	  
	  aSharedVariable	  =	  -‐1;	  

	  	  	  	  	  }	  else	  {	  
	  doSomethingElse();	  
	  aSharedVariable	  =	  1;	  

	  	  	  	  	  }	  
	  	  	  	  	  return	  result;	  
}	  

Thread2 



Data race: master/worker model	


•  As we said there is no problem if threads only read shared 
resource (see Gabriele’s presentation on Plenary Session 2 on 
Valgrind for definition of data race)	


•  A G4 (with MT) application can be seen as simple finite state 
machine	


	




Data race: master/worker model	


•  Threads do not exists before /run/beamOn	

•  Master can write shared memory without problems	

•  When threads start they cannot anymore change the shared 

memory	

•  No need to lock	


Master 

Worker 



Data race: master/worker model	


•  Threads do not exists before /run/beamOn	

•  Master can write shared memory without problems	

•  When threads start they cannot anymore change the shared 

memory	

•  No need to lock	


Master 

Worker 

A Question to the collaboration:  
How can we improve in our code for MT?  
Do we need an ad-hoc tutorial? 



Geant4 10.0 : design and results	
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Geant4 Multi-threading: event level parallelism	


•  Design to minimize changes in user-code	


•  Maintain API changes at minimum	

•  Focus on “lock-free” code: linearity of speed-up (w.r.t. #threads) is the metric we 

are currently concentrating on (then we’ll optimize absolute throughput)	

•  Good results obtained for both metrics anyway (see later)	


•  Enforce use of POSIX standards to allow for integration with user preferred 
parallelization frameworks (e.g. MPI, TBB, …)	
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S=(Evts/s)nThresds/(Evts/s)1Thread	

Sequential	
 2 Evts/s	


MT w/ 1 thread	
 1.9 Evts/s	


MT w/ 2 threads	
 3.8 Evts/s	


Absolute throughput metric	
Speedup linearity metric	


No real numbers, just illustrative	




24 

Geometry and 
Physics 

configuration 

0 1 2 3 4 N 

Per-thread 
Init 

Per-thread 
Init 

Per-thread 
Init 

5 … 

Event 
Loop 

Event 
Loop 

Event 
Loop 

End Local 
Run 

End Local 
Run 

End Local 
Run 

Merge in Global  Run 

Per-event seeds pre-
prepared in  a “queue” 

Threads compete for next 
event to be processes (new 
in ref-08) 

Command line scoring and 
G4tools automatically merge 
results from threads 
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Basic design choice	


•  Thread-safety implemented via Thread Local Storage	

•  “Split-class” mechanism: reduce memory consumption	


•  Read-only part of most memory consuming objects shared between 
thread	


•  Geometry, Physics Tables	

•  Rest is thread-private	


	


GeometryObject 
 

- shapeSize 
- shapePosition 
- sensitiveDetector 

GeometryObject 
 

- shapeSize 
- shapePosition 
- TLS reference 

SplitClass Thread1 
- sensitiveDetector 

SplitClass Thread2 
- sensitiveDetector 

SplitClass Thread3 
- sensitiveDetector 
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Thread Local Storage	
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N threads	


10% critical	
 •  Each (parallel) program has sequential 
components	


•  Protect access to concurrent 
resources	


•  Simplest solution: use mutex/lock	

•  TLS: each thread has its own object 

(no need to lock)	

•  Supported by all modern 

compilers	

•  “just” add __thread to variables	

__thread	  int	  value	  =	  1;	  
•  Improved support in C++11 standard	


•  Drawback: increased memory usage 
and small cpu penalty (currently 1%), 
only simple data types for static/global 
variables can be made TLS	
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N threads	


1% critical	


Lock	


TLS	


Ideal	


NB: results obtained on toy application, not real G4	
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Important note: static Vs G4ThreadLocal Vs split-
class	


	

•  A static class data field is shared among all class instances and 

all threads	

•  A static G4ThreadLocal is shared among all class instances 

but not among threads	

•  The split-class mechanism allows for sharing among threads 

but not among instances	
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How to migrate code	


•  Documentation is currently in twiki:	

•  https://twiki.cern.ch/twiki/bin/view/Geant4/

MultiThreadingTaskForce	

•  Will be moved to docbook documentation 	


•  See Ivana’s presentation next for migration of user code 
examples	




29 

G4MTRunManager 

•  In brief: 	

1.  Replace G4RunManager with G4MTRunManager	

2.  Create new user-initialization G4VUserActionInitialization (n.b. 

G4RunManager extended to support this)	

3.  New UI commands (ignored if used in sequential mode):	


-  /run/numberOfThreads	  nThread	  
-  /run/eventModulo	  nEvents	  (under development, advanced)	

-  /control/cout/setCoutFile	  fileName	  ifAppend	  
-  /control/cout/setCerrFile	  fileName	  ifAppend	  
-  /control/cout/useBuffer	  flag	  
-  /control/cout/prefixString	  prefix	  
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Results: Physics Performances	


•  Strong reproducibility: 	

•  single events of MT and SEQ versions of the same application 

start with the same RNG seed. Verify after event engine status is 
the same. Ref-08 + bug-fix 100% reproducible	


•  Statistical Tests with SimplifiedCalorimeter 1:	

•  Compare full “GRID style” validation between SEQ application w/ 

SEQ G4 libs and SEQ application w/ MT G4 libs	

•  Compare MT application with SEQ application w/ SEQ G4 libs	


•  See Soon’s and Alberto’s presentation next	
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MT libs Vs SEQ libs 
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MT Application Vs SEQ Application 

•  Full showers simulated 
•  All physics process 

(excluding Low-E) 
included 

•  Observables (secondaries 
spectra, energy deposits) 
are statistically equivalent 

•  Need to test with a Low-E 
application: volunteers? 
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CPU performances 

•  Please refer to session Parallel 3A – Computing 
Performances for details 

•  Only few plots here to give fast overview 
•  Obtained with 10.0.beta 
•  G4 computing performances page kept up-to-date 
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Results: Linearity 	


•  Good linearity demonstrated	

•  Efficiency w.r.t. perfect linearity 90% (80% in HT) 	

•  Out-of-the box Geant4 with MT=ON	

•  Further improvements expected	


•  Test use of thread-private malloc library	

•  Reduce use of TLS when not necessary	

•  See Euro-Par2010, Part II LNCS6272, pp.287-303: full efficiency recovered	


Intel(R
) X

eon(R
) C

P
U

 L5520  @
 2.27G

H
z 

PRELIMINARY: CMS geometry HT regime 
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Results: Absolute performances 

•  Compare a single MT application with N threads w.r.t. N copies of the same 
application (assuming infinite memory)	


•  N=1 result is very important: it shows the overhead due to MT “machinary” (e.g. TLS 
perfomance loss)	


•  Only 1% loss: early prototype penalty fully solved	


5% 
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Results: large number of threads (MIC architecture)	


•  Hybrid mode: Host + Intel Xeon Phi coprocessor	

•  First look at total throughput: Evts/s	


•  Very good results: factor ~x3 in events produced w.r.t. host only	

•  Up to 8 MIC cards can be hosted by single host	

•  Need to coordinate processes (e.g. MPI, intel-MIC-offload)	

•  Very different initialization time between host and MIC	


PRELIMINARY: CMS geometry 
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MC 2013 Paper: comparison to sequential 

5% 

½  
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Results summary	


•  Very good and promising results achieved so far	

•  Physics:	


•  Sequential and MT are identical in physics output	

•  Reproducibile has been achieved (need to test each tag, though)	


•  CPU Performances:	

•  Linearity of speed-up obtained with >90% efficiency	

•  Very promisng results on large number of threads O(100) with 

>80% efficiency	

•  MEM Performances:	


•  Good reduction of memory usage (20-80MB/thread)	

•  Example (FullCMS application): 50% memory usage @10Threads 

(e.g. 10 threads use ½ memory w.r.t. 10 spawned processes)	
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Status of Geant4 Version 10.0	


•  Beta version announced on time	


•  All main functionalities have been ported to MT	

•  Only one limitation remains: Visualization is not yet fully 

functional (no event-by-event visualization during the event loop)	

•  WIN7 not yet working	


•  Migration of user code is relatively simple: existing 
examples and tests can be migrated in few hours, complex user 
applications will require more work	


	




Further studies	




Heterogeneous parallelism: MPI based G4MT	


•  MPI based parallelism already available in Geant4	

•  MPI works together with MT	


Example:	

4 MPI jobs	

2 threads/job	

MPI job owns histogram	


Next Step:	

Host + MIC simulation	

Based on MPI	
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Improve start-up time: Checkpointing	


•  Each parallel application has sequential part (G4MT: geometry definition, 
physics initialization, threads creation and initialization)	


•  With large number of threads sequential CPU-time can become 
important fraction of total run-time (especially true for accelerators)	


•  Substantially reduced via checkpoints (dump of program image to 
disk at specific points. A controlled “core-dump”), restart from 
checkpoint image	


•  DMTCP: checkpointing for multi-threaded programs (G. Cooperman et al)	

•  Tested with success for Geant4 MT (in collaboration with CMS experiment). 

On Xeon Phi:	

•  Start CMS simulation, checkpoint at first event (5 mins initialization)	

•  Replay/restart application from checkpoint file (10 seconds restart)	

•  Interesting possibility for production system: copy checkpoint image on many 

machines (or accelerators), start clones of process, re-seed processes	
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Work in progress	


•  Intel Thread Building Block (TBB): task based parallelism 
framework (expression of interest by some LHC experiment)	

•  TBB works with G4MT: provide one or two examples for final release	


•  ThreadPrivate malloc library (TPMalloc – G. Cooperman et 
al): each thread has its own heap, remove hidden locks in “new/delete”. 
Target to be provided as “external optional component”.	


•  Review APIs with feedback from early users: further simplify 
user-code migration	


•  Identify and solve hotspots, improve performances	


•  Fully functional Visualization drivers	




Future directions	


“The only thing we know about 
the future is that it will be 
different.” 
Peter Drucker 
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Accelerators	


•  Increasing interest in accelerators: two main 
technologies GPGPU / MIC architectures	

•  First two Top500 supercomputers based on accelerators (#1: 

Thianhe-2, Intel Xeon Phi ; #2: Titan, Nvidia K20)	

•  In some cases (GPU) rewrite completely code in 

technology specific language	

•  GPGPUs are particularly tailored to specific problems: very 

high performances can be reached in specific domain 
completely rewriting code in specific language	


•  Intel Xeon Phi advantage: no-need to rewrite code, 
optimizations done for MIC architecture are valid for host CPU	
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GPU	


•  SLAC/Stanford-ICME/KEK/NVIDIA project	

•  Full EM physics <100 MeV electrons/gammas	


•  Only one kind of material (water) with varying density (medical DICOM)	

•  No geometrical navigation (only voxelization)	


•  Benchamark on TESLA K20: O(100) faster than CPU G4 job (full normal navigation, full physics)	

•  Very promising for domain-specific applications	
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Beyond event-level parallelism 

•  To fully use new architecture potentials we need to investigate further level of 
parallelism	


•  SIMD (a.k.a. vectorization): very challenging (very limited success for HEP sw). Two options 
available:	


1.  Rewrite code with intrinsics or low-level constructors (bad idea: not portable, very 
complex for large sw as G4)	


2.  Use compilers auto-vectorization features together with high-level construct	

•  2011 results compiler auto-vectorization for G4 (out of the box): ~10k candidate loops, only 

about 5% actually auto-vectorized. Good point: compilers improve constantly	

•  More study needed for more-than-event-level parallelism  	


Geometry	

11%	


Others	

20%	


Had	

44%	


EM	

17%	


Others	

8%	


Other	

69%	


Physics	

 69%	


Possible strategy:	

Map candidate loops with most 
time	

Consuming routines, iteratively try 
out auto-vectorization	
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My personal view	


•  Use of high-level parallelization constructs to put 
parallelization in modules/algorithms for example:	

1.  openMP : de-facto standard, support for Intel accelerators	

2.  Intel CilkPlus : very simple usage (function vectorization via 

#pragmas), GCC support only in branch (integration with TBB)	

3.  openACC : relatively new open standard aimed at developing 

directives for accelerators (technology independent)	

4.  Your favorite goes here …	


•  Need to experiment with all technologies and understand benefits / 
challenges	


•  Possible path: identify one or two of the most time consuming 
elements in simulations (e.g. cross-section calculations , Bertini intra-
nuclear cascade) and try to apply inter-algorithm parallelism 	
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A roadmap: my view 

Core/Thread (intra-
model parallelism) 

CPU (event level 
parallelism) 

Host Parallelism 
(cpu/accellerator) 

User Interface Application 

MPI 

MT 

openMP/
Cilk/… 

openMP/
Cilk/… 

MT 

MPI 

MT 

þ 
þ 
þ 
ý 
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Conclusions 

•  Geant4 Version 10.0 well on track for end of year release	

•  Major developments for event-level parallelism	


•  Very promising results obtained on both “traditional” 
CPUs and MIC architectures	


•  Expect further improvements	

•  Possible to integrate G4MT with additional high-level parallelization 

frameworks (TBB, MPI)	

•  Scalability demonstrated up to O(100) threads	


•  Ready for future challenges of current and next generation large 
simulation campaigns (i.e. LHC –scale)	


•  New possibilities for “smaller” simulation needs (efficient use of many 
core machines, accelerators on desktops)	


•  Multi-threading and thread safety is the first 
indispensable step towards further review of Geant4 
code	
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Geometry and 
Physics 

configuration 

0 1 2 3 4 N 

Per-thread 
Init 

Per-thread 
Init 

Per-thread 
Init 

5 … 

Event 
Loop 

Event 
Loop 

Event 
Loop 

Random Seeds and Run  

•  To gurantee 
reproducibility each 
thread has its own 
RNG 

•  Master thread pre-
generates per-event 
seed 

•  Each event is re-
seeded 

•  Further refinement on 
RNG to be studied 
(pRNG) 

•  New: threads compete 
for (group of) next 
events to process 

End Local 
Run 

End Local 
Run 

End Local 
Run 

Merge in Global  Run 


