
Geant4 Version 10:

A.  Dotti for the Geant4 Multithreading Task Force
https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce

18th Collaboration Meeting, Seville (SPAIN)

The challenges of the many-core
computing era

Introduction	

3

What’s new in Geant4 Version 10?	

• Next version of Geant4 (December 2013) will be a major
release	

•  Incudes several improvements	

-  All categories will include important improvements	

• Main highlight is Multi-threading capabilities	

-  Introduce event-level parallelism	

	

4

Geant4 MT: from prototypes to production	

G4MT 9.4. (2011) G4MT 9.5
(2012)

G4
10.0.beta

G4 10.0
(Dec. 2013)

G4 10
series

(2014+)

•  Proof of principle	

•  Identify objects to

be shared	

•  First testing	

•  MT code
integrated into
G4	

•  API re-design	

•  Example migration	

•  Further testing	

•  First optimizations	

•  Public release	

•  All functionalities

ported to MT	

•  Further
Refinements	

•  Focus on further
performance
improvements	

5

Why parallelism? (a reminder)	

•  Increase frequency of CPU causes
increase of power needs	

•  Reached plateau around 2005	

•  No more increase in CPU frequency	

•  However number of transistors /$ you
can buy continues to grow 	

•  Multi/May-core era	

•  Note: quantity memory you can buy
with same $ scales slower	

•  Expect: 	

1.  Many core (double/2yrs?)	

2.  Single core performance will not

increase as we were used to	

3.  Less memory/core	

•  New software models need to take
these into account: increase
parallelism	
1.E-04	

1.E-02	

1.E+00	

1.E+02	

1.E+04	

1.E+06	

1.E+08	

1.E+10	

1.E+12	

1970	
 1975	
 1980	
 1985	
 1990	
 1995	
 2000	
 2005	
 2010	
 2015	
 2020	

Bi
llio

ns
	

b/$(x10000)	

T*Hz/$	

CPU Clock Frequecy 1and usage: The Future of Computing Performance: Game Over or Next Level?	

DRAM cost: Data from 1971-2000: VLSI Research Inc. Data from 2001-2002: ITRS, 2002 Update, Table 7a, Cost-Near-Term Years, p. 172. Data from 2003-2018: ITRS, 2004 Update, Tables 7a and 7b, Cost-Near-Term Years, pp. 20-21.	

CPU cost: Data from 1976-1999: E. R. Berndt, E. R. Dulberger, and N. J. Rappaport, "Price and Quality of Desktop and Mobile Personal Computers: A Quarter Century of History," July 17, 2000, ;Data from 2001-2016: ITRS, 2002 Update, On-Chip Local Clock in Table 4c: Performance and Package Chips: Frequency On-Chip Wiring Levels -- Near-Term Years, p. 167. ;	

Average transistor price: Intel and Dataquest reports (December 2002), see Gordon E. Moore, "Our Revolution,”	

Microprocessor Frequency (MHz)

Microprocessor power dissipation (W)

6

In brief	

•  Modern CPU architectures: need to introduce parallelism	

•  Memory quantity and its access will limit number of concurrent

processes running on single chip	

•  Add parallelism in the application code	

•  Geant4 needs back-compatibility with user code and simple
approach (physicists != computer scientists)	

•  Events are independent: each event can be simulated separately	

•  Multi-threading for event level parallelism is the natural choice

	
	

7

References	

•  Very good Gene Cooperman’s presentations at 16th Collaboration
Workshop:	

•  https://indico.fnal.gov/sessionDisplay.py?

sessionId=12&confId=4535#20110920	

•  Gene, as primary author of MT in Geant4 explains there very important

details on thread-safety	

•  See also:	

•  X. Dong et al. Euro-Par 2010 - Parallel Processing Lecture Notes in
Computer Science Volume 6272, 2010, pp 287-303	

•  X. Dong et al. Xin Dong et al 2012 J. Phys.: Conf. Ser. 396 052029	

•  J. Apostolakis st al. : Upcoming SNA-MC2013 conference contribution	

•  Let me give you some notes, sorry I will not be so precise as Gene,
but I’ll do my best	

	

Threading 101	

9

What is a thread?	

Sequential application	

10

What is a thread?	

Sequential application: start N (cores/CPUs) copies of application if fits in
memory	

11

What is a thread?	

MT Application: single application starts threads. For G4: application (master)
controls workers that do simulation, no memory sharing now, each worker is a
copy of the application	

12

What is a thread?	

Memory reduction: introduce shared objects, memory of N threads is less than
memory used by N copies of application	

13

Data race	

Consider a function that reads and writes a shared resource (a
global variable in this example).	

double	 aSharedVariable;	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 return	 result;	
}	

14

Data race	

Now consider two threads that execute at the same time the
function. Concurrent access to the shared resource	

	

	 	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 return	 result;	
}	

Thread1
	 	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 return	 result;	
}	

Thread2

double	 aSharedVariable;	

15

Data race	

result is a local variable, exists in each thread separately not a
problem, T1 starts arrives here and then is halted	

	

	 	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 return	 result;	
}	

Thread1
	 	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 return	 result;	
}	

Thread2

double	 aSharedVariable;	

16

Data race	

Now T2 starts and arrives here, the shared resource value is not
yet updated, wrong behavior	

	 	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 return	 result;	
}	

Thread1
	 	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 return	 result;	
}	

Thread2

double	 aSharedVariable;	

17

Data race	

Use mutex / locks to create a barrier. T2 will not start until T1 reaches UnLock	

Significantly reduces performances (general rule in G4, not allowed in methods
called during the event loop)	

	

	 	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 Lock(&mutex);	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 UnLock(&mutex);	
	 	 	 	 	 return	 result;	
}	

Thread1
	 	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 Lock(&mutex);	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 UnLock(&mutex);	
	 	 	 	 	 return	 result;	
}	

Thread2

double	 aSharedVariable;	

18

Data race: TLS	

•  Does aSahredVariable needs to be shared between threads?	

•  if not, minimal change required, each thread has its own copy	

•  No memory performances, some CPU penalty	

•  General rule in G4: do not use unless really necessary	

	

double	 __thread	 aSahredVariable;	 	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 return	 result;	
}	

Thread1
	 double	 __thread	 aSahredVariable;	
	
int	 SomeFunction()	 {	
	 	 	 	 	 int	 result	 =	 0;	
	 	 	 	 	 if	 (aShredVariable	 >	 0)	 {	

	 result	 =	 aSharedVariable;	
	 aSharedVariable	 =	 -‐1;	

	 	 	 	 	 }	 else	 {	
	 doSomethingElse();	
	 aSharedVariable	 =	 1;	

	 	 	 	 	 }	
	 	 	 	 	 return	 result;	
}	

Thread2

Data race: master/worker model	

•  As we said there is no problem if threads only read shared
resource (see Gabriele’s presentation on Plenary Session 2 on
Valgrind for definition of data race)	

•  A G4 (with MT) application can be seen as simple finite state
machine	

	

Data race: master/worker model	

•  Threads do not exists before /run/beamOn	

•  Master can write shared memory without problems	

•  When threads start they cannot anymore change the shared

memory	

•  No need to lock	

Master

Worker

Data race: master/worker model	

•  Threads do not exists before /run/beamOn	

•  Master can write shared memory without problems	

•  When threads start they cannot anymore change the shared

memory	

•  No need to lock	

Master

Worker

A Question to the collaboration:
How can we improve in our code for MT?
Do we need an ad-hoc tutorial?

Geant4 10.0 : design and results	

23

Geant4 Multi-threading: event level parallelism	

•  Design to minimize changes in user-code	

•  Maintain API changes at minimum	

•  Focus on “lock-free” code: linearity of speed-up (w.r.t. #threads) is the metric we

are currently concentrating on (then we’ll optimize absolute throughput)	

•  Good results obtained for both metrics anyway (see later)	

•  Enforce use of POSIX standards to allow for integration with user preferred
parallelization frameworks (e.g. MPI, TBB, …)	

0	

1	

2	

3	

4	

5	

1	
 2	
 3	
 4	

S	

#Threads	

Ideal	

Real	

S=(Evts/s)nThresds/(Evts/s)1Thread	

Sequential	
 2 Evts/s	

MT w/ 1 thread	
 1.9 Evts/s	

MT w/ 2 threads	
 3.8 Evts/s	

Absolute throughput metric	
Speedup linearity metric	

No real numbers, just illustrative	

24

Geometry and
Physics

configuration

0 1 2 3 4 N

Per-thread
Init

Per-thread
Init

Per-thread
Init

5 …

Event
Loop

Event
Loop

Event
Loop

End Local
Run

End Local
Run

End Local
Run

Merge in Global Run

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes (new
in ref-08)

Command line scoring and
G4tools automatically merge
results from threads

25

Basic design choice	

•  Thread-safety implemented via Thread Local Storage	

•  “Split-class” mechanism: reduce memory consumption	

•  Read-only part of most memory consuming objects shared between
thread	

•  Geometry, Physics Tables	

•  Rest is thread-private	

	

GeometryObject

- shapeSize
- shapePosition
- sensitiveDetector

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread1
- sensitiveDetector

SplitClass Thread2
- sensitiveDetector

SplitClass Thread3
- sensitiveDetector

26

Thread Local Storage	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

S
p

e
e

d
u

p
	

N threads	

10% critical	
 •  Each (parallel) program has sequential
components	

•  Protect access to concurrent
resources	

•  Simplest solution: use mutex/lock	

•  TLS: each thread has its own object

(no need to lock)	

•  Supported by all modern

compilers	

•  “just” add __thread to variables	

__thread	 int	 value	 =	 1;	
•  Improved support in C++11 standard	

•  Drawback: increased memory usage
and small cpu penalty (currently 1%),
only simple data types for static/global
variables can be made TLS	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

S
p

e
e

d
u

p
	

N threads	

1% critical	

Lock	

TLS	

Ideal	

NB: results obtained on toy application, not real G4	

27

Important note: static Vs G4ThreadLocal Vs split-
class	

	

•  A static class data field is shared among all class instances and

all threads	

•  A static G4ThreadLocal is shared among all class instances

but not among threads	

•  The split-class mechanism allows for sharing among threads

but not among instances	

	

28

How to migrate code	

•  Documentation is currently in twiki:	

•  https://twiki.cern.ch/twiki/bin/view/Geant4/

MultiThreadingTaskForce	

•  Will be moved to docbook documentation 	

•  See Ivana’s presentation next for migration of user code
examples	

29

G4MTRunManager

•  In brief: 	

1.  Replace G4RunManager with G4MTRunManager	

2.  Create new user-initialization G4VUserActionInitialization (n.b.

G4RunManager extended to support this)	

3.  New UI commands (ignored if used in sequential mode):	

-  /run/numberOfThreads	 nThread	
-  /run/eventModulo	 nEvents	 (under development, advanced)	

-  /control/cout/setCoutFile	 fileName	 ifAppend	
-  /control/cout/setCerrFile	 fileName	 ifAppend	
-  /control/cout/useBuffer	 flag	
-  /control/cout/prefixString	 prefix	

30

Results: Physics Performances	

•  Strong reproducibility: 	

•  single events of MT and SEQ versions of the same application

start with the same RNG seed. Verify after event engine status is
the same. Ref-08 + bug-fix 100% reproducible	

•  Statistical Tests with SimplifiedCalorimeter 1:	

•  Compare full “GRID style” validation between SEQ application w/

SEQ G4 libs and SEQ application w/ MT G4 libs	

•  Compare MT application with SEQ application w/ SEQ G4 libs	

•  See Soon’s and Alberto’s presentation next	

31

MT libs Vs SEQ libs

32

MT Application Vs SEQ Application

•  Full showers simulated
•  All physics process

(excluding Low-E)
included

•  Observables (secondaries
spectra, energy deposits)
are statistically equivalent

•  Need to test with a Low-E
application: volunteers?

33

CPU performances

•  Please refer to session Parallel 3A – Computing
Performances for details

•  Only few plots here to give fast overview
•  Obtained with 10.0.beta
•  G4 computing performances page kept up-to-date

34

Results: Linearity 	

•  Good linearity demonstrated	

•  Efficiency w.r.t. perfect linearity 90% (80% in HT) 	

•  Out-of-the box Geant4 with MT=ON	

•  Further improvements expected	

•  Test use of thread-private malloc library	

•  Reduce use of TLS when not necessary	

•  See Euro-Par2010, Part II LNCS6272, pp.287-303: full efficiency recovered	

Intel(R
) X

eon(R
) C

P
U

 L5520 @
 2.27G

H
z

PRELIMINARY: CMS geometry HT regime

35

Results: Absolute performances

•  Compare a single MT application with N threads w.r.t. N copies of the same
application (assuming infinite memory)	

•  N=1 result is very important: it shows the overhead due to MT “machinary” (e.g. TLS
perfomance loss)	

•  Only 1% loss: early prototype penalty fully solved	

5%

36

Results: large number of threads (MIC architecture)	

•  Hybrid mode: Host + Intel Xeon Phi coprocessor	

•  First look at total throughput: Evts/s	

•  Very good results: factor ~x3 in events produced w.r.t. host only	

•  Up to 8 MIC cards can be hosted by single host	

•  Need to coordinate processes (e.g. MPI, intel-MIC-offload)	

•  Very different initialization time between host and MIC	

PRELIMINARY: CMS geometry

37

MC 2013 Paper: comparison to sequential

5%

½

38

Results summary	

•  Very good and promising results achieved so far	

•  Physics:	

•  Sequential and MT are identical in physics output	

•  Reproducibile has been achieved (need to test each tag, though)	

•  CPU Performances:	

•  Linearity of speed-up obtained with >90% efficiency	

•  Very promisng results on large number of threads O(100) with

>80% efficiency	

•  MEM Performances:	

•  Good reduction of memory usage (20-80MB/thread)	

•  Example (FullCMS application): 50% memory usage @10Threads

(e.g. 10 threads use ½ memory w.r.t. 10 spawned processes)	

39

Status of Geant4 Version 10.0	

•  Beta version announced on time	

•  All main functionalities have been ported to MT	

•  Only one limitation remains: Visualization is not yet fully

functional (no event-by-event visualization during the event loop)	

•  WIN7 not yet working	

•  Migration of user code is relatively simple: existing
examples and tests can be migrated in few hours, complex user
applications will require more work	

	

Further studies	

Heterogeneous parallelism: MPI based G4MT	

•  MPI based parallelism already available in Geant4	

•  MPI works together with MT	

Example:	

4 MPI jobs	

2 threads/job	

MPI job owns histogram	

Next Step:	

Host + MIC simulation	

Based on MPI	

42

Improve start-up time: Checkpointing	

•  Each parallel application has sequential part (G4MT: geometry definition,
physics initialization, threads creation and initialization)	

•  With large number of threads sequential CPU-time can become
important fraction of total run-time (especially true for accelerators)	

•  Substantially reduced via checkpoints (dump of program image to
disk at specific points. A controlled “core-dump”), restart from
checkpoint image	

•  DMTCP: checkpointing for multi-threaded programs (G. Cooperman et al)	

•  Tested with success for Geant4 MT (in collaboration with CMS experiment).

On Xeon Phi:	

•  Start CMS simulation, checkpoint at first event (5 mins initialization)	

•  Replay/restart application from checkpoint file (10 seconds restart)	

•  Interesting possibility for production system: copy checkpoint image on many

machines (or accelerators), start clones of process, re-seed processes	

43

Work in progress	

•  Intel Thread Building Block (TBB): task based parallelism
framework (expression of interest by some LHC experiment)	

•  TBB works with G4MT: provide one or two examples for final release	

•  ThreadPrivate malloc library (TPMalloc – G. Cooperman et
al): each thread has its own heap, remove hidden locks in “new/delete”.
Target to be provided as “external optional component”.	

•  Review APIs with feedback from early users: further simplify
user-code migration	

•  Identify and solve hotspots, improve performances	

•  Fully functional Visualization drivers	

Future directions	

“The only thing we know about
the future is that it will be
different.”
Peter Drucker

45

Accelerators	

•  Increasing interest in accelerators: two main
technologies GPGPU / MIC architectures	

•  First two Top500 supercomputers based on accelerators (#1:

Thianhe-2, Intel Xeon Phi ; #2: Titan, Nvidia K20)	

•  In some cases (GPU) rewrite completely code in

technology specific language	

•  GPGPUs are particularly tailored to specific problems: very

high performances can be reached in specific domain
completely rewriting code in specific language	

•  Intel Xeon Phi advantage: no-need to rewrite code,
optimizations done for MIC architecture are valid for host CPU	

46

GPU	

•  SLAC/Stanford-ICME/KEK/NVIDIA project	

•  Full EM physics <100 MeV electrons/gammas	

•  Only one kind of material (water) with varying density (medical DICOM)	

•  No geometrical navigation (only voxelization)	

•  Benchamark on TESLA K20: O(100) faster than CPU G4 job (full normal navigation, full physics)	

•  Very promising for domain-specific applications	

47

Beyond event-level parallelism

•  To fully use new architecture potentials we need to investigate further level of
parallelism	

•  SIMD (a.k.a. vectorization): very challenging (very limited success for HEP sw). Two options
available:	

1.  Rewrite code with intrinsics or low-level constructors (bad idea: not portable, very
complex for large sw as G4)	

2.  Use compilers auto-vectorization features together with high-level construct	

•  2011 results compiler auto-vectorization for G4 (out of the box): ~10k candidate loops, only

about 5% actually auto-vectorized. Good point: compilers improve constantly	

•  More study needed for more-than-event-level parallelism 	

Geometry	

11%	

Others	

20%	

Had	

44%	

EM	

17%	

Others	

8%	

Other	

69%	

Physics	

 69%	

Possible strategy:	

Map candidate loops with most
time	

Consuming routines, iteratively try
out auto-vectorization	

48

My personal view	

•  Use of high-level parallelization constructs to put
parallelization in modules/algorithms for example:	

1.  openMP : de-facto standard, support for Intel accelerators	

2.  Intel CilkPlus : very simple usage (function vectorization via

#pragmas), GCC support only in branch (integration with TBB)	

3.  openACC : relatively new open standard aimed at developing

directives for accelerators (technology independent)	

4.  Your favorite goes here …	

•  Need to experiment with all technologies and understand benefits /
challenges	

•  Possible path: identify one or two of the most time consuming
elements in simulations (e.g. cross-section calculations , Bertini intra-
nuclear cascade) and try to apply inter-algorithm parallelism 	

49

A roadmap: my view

Core/Thread (intra-
model parallelism)

CPU (event level
parallelism)

Host Parallelism
(cpu/accellerator)

User Interface Application

MPI

MT

openMP/
Cilk/…

openMP/
Cilk/…

MT

MPI

MT

þ
þ
þ
ý

50

Conclusions

•  Geant4 Version 10.0 well on track for end of year release	

•  Major developments for event-level parallelism	

•  Very promising results obtained on both “traditional”
CPUs and MIC architectures	

•  Expect further improvements	

•  Possible to integrate G4MT with additional high-level parallelization

frameworks (TBB, MPI)	

•  Scalability demonstrated up to O(100) threads	

•  Ready for future challenges of current and next generation large
simulation campaigns (i.e. LHC –scale)	

•  New possibilities for “smaller” simulation needs (efficient use of many
core machines, accelerators on desktops)	

•  Multi-threading and thread safety is the first
indispensable step towards further review of Geant4
code	

51

Acknowledgments	

I would like to thank few people that helped to produce the
material here presented and gave important contributions during
discussions:	

•  K. Murakami (KEK), N. Henderson (SU), A. Vladimirov (SU), G.
Cooperman (NortheasternU), X. Dong (NortheasternU), G.
Cosmo (CERN), P. Elmer (PrincetonU)	

Backup

52

Geometry and
Physics

configuration

0 1 2 3 4 N

Per-thread
Init

Per-thread
Init

Per-thread
Init

5 …

Event
Loop

Event
Loop

Event
Loop

Random Seeds and Run

•  To gurantee
reproducibility each
thread has its own
RNG

•  Master thread pre-
generates per-event
seed

•  Each event is re-
seeded

•  Further refinement on
RNG to be studied
(pRNG)

•  New: threads compete
for (group of) next
events to process

End Local
Run

End Local
Run

End Local
Run

Merge in Global Run

