
Refactoring and Optimizing
Geometry Routines for (SIMD)

Vector Particle Processing
-- goals and status report --

Geant4 collaboration meeting, Sevilla, 24.09.2013

Sandro Wenzel / CERN-PH-SFT
(for the “Geant-Vector Prototype” team)

R&D!

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Motivation
Explore possibilities to recast particle simulation so that it

takes advantage from all performance dimensions/technologies

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Motivation
Explore possibilities to recast particle simulation so that it

takes advantage from all performance dimensions/technologies

In HEP, mainly to reduce memory footprint

Dimension 1 (“sharing data”) : multithreading/
multicore

Geant4 Release 10!

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Motivation
Explore possibilities to recast particle simulation so that it

takes advantage from all performance dimensions/technologies

In HEP, mainly to reduce memory footprint

Dimension 1 (“sharing data”) : multithreading/
multicore

Geant4 Release 10!

Currently not exploited because requires “parallel data” to
work on

Dimension 1I (“troughput increase”) : incore micro-
parallelism or vectorization

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Motivation
Explore possibilities to recast particle simulation so that it

takes advantage from all performance dimensions/technologies

In HEP, mainly to reduce memory footprint

Dimension 1 (“sharing data”) : multithreading/
multicore

Geant4 Release 10!

Currently not exploited because requires “parallel data” to
work on

Dimension 1I (“troughput increase”) : incore micro-
parallelism or vectorization

Research projects (GPU prototype and Geant-Vector Prototype) have
started targeting beyond dimension I (see session Thursday):

parallel data (“baskets”) = particles from different events
grouped by logical volumes

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Commodity processors have vector registers on whose components
(single) instruction can be performed in parallel (microparallelism)

Reminder of vector-microparallelism

v w y zb c da

a*v b*w c*y d*z

CPU instruction

single instruction multiple data = SIMD
Examples of SIMD architectures: MMX, SSE, AVX, ...

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Commodity processors have vector registers on whose components
(single) instruction can be performed in parallel (microparallelism)

Reminder of vector-microparallelism

v w y zb c da

a*v b*w c*y d*z

CPU instruction

single instruction multiple data = SIMD
Examples of SIMD architectures: MMX, SSE, AVX, ...

a*v

CPU instruction

optimal usage (vector registers full) current usage (3/4 empty for AVX)

We are loosing factors!

a v

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

1st Goal: Vector Processing in Simple Geometry
Algorithms

Goal: Enable geometry components to process baskets/
vectors of data and study performance opportunities

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

1st Goal: Vector Processing in Simple Geometry
Algorithms

x1

d1

s

1 particle

x1

d1

s

x4

x2

x3

vector of N particles

distFromInside
mothervolume

distFromInside
mothervolume

SIMD

1 result N results

Provide new interfaces to process baskets in basic geometry
algorithms

make efficient use of baskets and try to use SIMD vector instructions
wherever possible (throughput optimization)

1. Milestone

Goal: Enable geometry components to process baskets/
vectors of data and study performance opportunities

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Vector processing in complex algorithm: Scalar
(simple) navigation versus vector navigation

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

NE
XT

 P
AR

TI
CL

E
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next
daughter volume

single particle flow

each particles undergoes a
series of basic algorithms (with
outer loop over particles)

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Vector processing in complex algorithm: Scalar
(simple) navigation versus vector navigation

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

NE
XT

 P
AR

TI
CL

E
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next
daughter volume

single particle flow

each particles undergoes a
series of basic algorithms (with
outer loop over particles)

distFromInside
mothervolume

pick next
daughter volume

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

Each algorithm takes a basket
of particles and spits out
vectors to the next algorithms

2. Milestone

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Vector processing in complex algorithm: Scalar
(simple) navigation versus vector navigation

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

NE
XT

 P
AR

TI
CL

E
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next
daughter volume

single particle flow

each particles undergoes a
series of basic algorithms (with
outer loop over particles)

distFromInside
mothervolume

pick next
daughter volume

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

Each algorithm takes a basket
of particles and spits out
vectors to the next algorithms

less function calls!

SIMD (SSE, AVX) instructions

better code locality (icache)

2. Milestone

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

“autovectorization:” Let the compiler figure this out himself (without
code changes).

Pro: best option for portability and maintenance

Cons: This currently never works (but in a few cases)....

The programming model
In order to use SIMD CPU capabilities, need to emit special assembly instructions
(“add” versus “vaddp”) to the hardware.

Multiple options exist:

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

“autovectorization:” Let the compiler figure this out himself (without
code changes).

Pro: best option for portability and maintenance

Cons: This currently never works (but in a few cases)....

explicit vector oriented programming via intrinsics: Manually
instruct the compiler to use vector instructions:

at the lowest level: intrinsics

at higher level: template based APIs that hide low level details like the Vc library

Pro: good performance, portability, only little platform dependency (templates!)

Cons: requires some code changes, refactoring of code

The programming model
In order to use SIMD CPU capabilities, need to emit special assembly instructions
(“add” versus “vaddp”) to the hardware.

Multiple options exist:

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

“autovectorization:” Let the compiler figure this out himself (without
code changes).

Pro: best option for portability and maintenance

Cons: This currently never works (but in a few cases)....

explicit vector oriented programming via intrinsics: Manually
instruct the compiler to use vector instructions:

at the lowest level: intrinsics

at higher level: template based APIs that hide low level details like the Vc library

Pro: good performance, portability, only little platform dependency (templates!)

Cons: requires some code changes, refactoring of code

language extensions, such as Intel Cilk Plus Array notation

similiar to point 2, investigated but not covered in this talk

The programming model
In order to use SIMD CPU capabilities, need to emit special assembly instructions
(“add” versus “vaddp”) to the hardware.

Multiple options exist:

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

code.compeng.uni-frankfurt.de/projects/Vc

“autovectorization:” Let the compiler figure this out himself (without
code changes).

Pro: best option for portability and maintenance

Cons: This currently never works (but in a few cases)....

explicit vector oriented programming via intrinsics: Manually
instruct the compiler to use vector instructions:

at the lowest level: intrinsics

at higher level: template based APIs that hide low level details like the Vc library

Pro: good performance, portability, only little platform dependency (templates!)

Cons: requires some code changes, refactoring of code

language extensions, such as Intel Cilk Plus Array notation

similiar to point 2, investigated but not covered in this talk

The programming model
In order to use SIMD CPU capabilities, need to emit special assembly instructions
(“add” versus “vaddp”) to the hardware.

Multiple options exist:

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Status of simple shape/algorithm investigations
provided vector interfaces to all shapes and optimized code to simple shapes for
functions

“ DistToInside”, “DistToOutside”, “Safety”, “IsInside/Contains”

here: using the ROOT shapes (but USolids will come)

obtained good experience and results using the Vc programming model

For simple shapes the performance gains match our expectations

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Status of simple shape/algorithm investigations
provided vector interfaces to all shapes and optimized code to simple shapes for
functions

“ DistToInside”, “DistToOutside”, “Safety”, “IsInside/Contains”

here: using the ROOT shapes (but USolids will come)

obtained good experience and results using the Vc programming model

For simple shapes the performance gains match our expectations

comparison of processing times for 1024 particles (AVX instructions), times in microseconds

ROOT/5.34.09 ROOT/5.34.09 (patched) Vc (SIMD) version

0

17.5

35.0

52.5

70.0

Box Cone Tube

2.7
1.7 2.94

DistToInside

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Status of simple shape/algorithm investigations
provided vector interfaces to all shapes and optimized code to simple shapes for
functions

“ DistToInside”, “DistToOutside”, “Safety”, “IsInside/Contains”

here: using the ROOT shapes (but USolids will come)

obtained good experience and results using the Vc programming model

For simple shapes the performance gains match our expectations

comparison of processing times for 1024 particles (AVX instructions), times in microseconds

ROOT/5.34.09 ROOT/5.34.09 (patched) Vc (SIMD) version

0

17.5

35.0

52.5

70.0

Box Cone Tube

2.7
1.7 2.94

DistToInside

0

12.5

25.0

37.5

50.0

Box Cone Tube

1.75

2.24

1.98

DistToOutside

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Status of refactoring simple algorithms (II)

a lot of work still to do in SIMD-optimizing more complicated
shapes; preliminary results available for Polycone (backup)

outside shapes, vector-optimized other simple algorithmic blocks:

coordinate and vector transformations (“master-to-local”)

min, max algorithms, ...

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

 Benchmarking the Vector Navigation

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

NE
XT

 P
AR

TI
CL

E
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next
daughter volume

single particle flow

distFromInside
mothervolume

pick next
daughter volume

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

have now everything
together to compare

vs

in: N particles in a logical volume

out: steps and next boundaries for N particles

scalar vector

(in reference frame of logical volume)

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Need a simple toy detector as logical volume

endcap (cone)

plate detectors

beampipe (tube)

tubular shield

implemented a toy detector for a benchmark (“not to easy; not too complex”): 2 tubes, 4
plate detectors, 2 endcaps (cones), 1 tubular mother volume

Logical volume filled with testparticle pool (random
position and random direction) from which we use
a subset N for benchmarks (P repetitions)

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Results from Benchmark: Overall Runtime

Vec (AVX)
Vec (SSE4)
ROOT seq

number of particles

tra
ck
in
g
tim
e
pe
rp
ar
tic
le
(m
ic
ro
se
co
nd
)

100001000100101

12

10

8

6

4

2

0

time of processing/navigating N particles (P repetitions) using scalar algorithm
(ROOT) versus vector version

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Results from Benchmark: Overall Runtime

Vec (AVX)
Vec (SSE4)
ROOT seq

number of particles

tra
ck
in
g
tim
e
pe
rp
ar
tic
le
(m
ic
ro
se
co
nd
)

100001000100101

12

10

8

6

4

2

0

time of processing/navigating N particles (P repetitions) using scalar algorithm
(ROOT) versus vector version

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Results from Benchmark: Overall Runtime

Vec (AVX)
Vec (SSE4)
ROOT seq

number of particles

tra
ck
in
g
tim
e
pe
rp
ar
tic
le
(m
ic
ro
se
co
nd
)

100001000100101

12

10

8

6

4

2

0

total speedup of 3.1

time of processing/navigating N particles (P repetitions) using scalar algorithm
(ROOT) versus vector version

some further gain
with AVX

already gain
considerably for small
N

there is an optimal
point of operation
(performance
degradation for large
N)

excellent speedup for
SSE4 version

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Further Metrics: Executed Instructions

Vec (AVX)
Vec (SSE4)
ROOT seq

number of particles

in
str
uc
tio
ns
pe
rp
ar
tic
le
(in
m
ill
io
n)

100001000100101

60

50

40

30

20

10

0

investigate origin of speedup: study hardware performance counters

developed a “timer” based approach where we read out counter before and after
an arbitrary code section (using libpfm)

gain mainly due to
less instructions
(for the same work)

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Further Metrics: Executed Instructions

Vec (AVX)
Vec (SSE4)
ROOT seq

number of particles

in
str
uc
tio
ns
pe
rp
ar
tic
le
(in
m
ill
io
n)

100001000100101

60

50

40

30

20

10

0

investigate origin of speedup: study hardware performance counters

developed a “timer” based approach where we read out counter before and after
an arbitrary code section (using libpfm)

gain mainly due to
less instructions
(for the same work)

 comparison for N=1024 particles
(AVX versus ROOT seq)

detailed analysis (binary
instrumentation) can
give statistics, e.g.:

ROOT Vec

MOV 30% 15%

CALL 4% 0.4%

V..PD
(SIMD
instr)

5% 55%

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Further Metrics: L1 instruction cache misses

The number of instruction cache misses is lower in vector treatment, as
predicted. Effect will become more important when navigation itself
embedded in more complex environment.

Vec (AVX)
Vec (SSE4)
ROOT seq

number of particles

L1
in
str
uc
tio
n
ca
ch
e
m
iss
es

100001000100101

5000

4000

3000

2000

1000

0

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Vec (AVX)
Vec (SSE4)
ROOT seq

number of particles

ca
ch
e
m
iss
es
(to
ta
l)

100001000100101

12000

10000

8000

6000

4000

2000

0

Further Metrics: total cache misses
However, vector version suffers from more data cache misses for large
number of particles, responsible for the observed performance degradation

likely due to structure-of-array usage in vector case (versus array of
structures in ROOT case)

Once we know realistic N, might have to reconsider this option

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Summary / Outlook
Summary

vectorization is not threading and needs to be cared for
additionally!
a vector/basket centric architecture allows to make use of
SIMD instruction sets, needs less functions calls, and is more
instruction cache friendly
provided a first refactored vector API in ROOT geometry/
navigation library and showed good performance gains for
individual as well as complex algorithms on commodity
hardware
Very good experience with explicit vector oriented
programming model (Vc, Intel Cilk Plus Arrays)

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Summary / Outlook

more complex shapes and algorithms (voxelization), USolids ...

Xeon Phi, (GPU)

full flow of vectors in Geant-V prototype

Outlook

Summary
vectorization is not threading and needs to be cared for
additionally!
a vector/basket centric architecture allows to make use of
SIMD instruction sets, needs less functions calls, and is more
instruction cache friendly
provided a first refactored vector API in ROOT geometry/
navigation library and showed good performance gains for
individual as well as complex algorithms on commodity
hardware
Very good experience with explicit vector oriented
programming model (Vc, Intel Cilk Plus Arrays)

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Acknowledgements

Geant-V team:

J. Apostolakis

F. Carminati,

A. Gheatta

Thanks to:

AND TO YOU FOR
LISTENING!!

contributors to basic Vc coding:

 Juan Valles (CERN summer student)

 Marilena Bandieramonte (University
of Catania, Italy)

 Raman Sehgal (BARC, India)

help performance analysis /
investigation of Intel Cilk
Plus Array Notation:

Lauren Duhem (Intel)

CERN Openlab

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Backup slides

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Notes on benchmark conditions

System: Ivybridge iCore7 (4 core, not hyperthreaded (can read out
8hardware performance counters))

Compiler: gcc4.7.2 (compile flags -O2 -unroll-loops -ffast-math -mavx)

OS: slc6

Vc version: 0.73

benchmarks usually run on empty system with cpu pinning (taskset -c)

benchmarks use preallocated pool of testdata, in which we take out N particles
for processing. Repeat this P times. For repetitions distinguish between random
access of N particles (higher cache impact) or sequential access in datapool (as
shown here)

benchmarks shown use NxP=const to time an overall similar amount of work

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

void foo(double const *a,
 double const *b,
 double * out, int np){
 for(int i=0;i<np;i+=Vc::double_v::Size)
 {
 // fetch chunk of data into Vc vector
 Vc::double_v a_v(&a[i]);
 Vc::double_v b_v(&b[i]);

 // computation just as before
 b_v = b_v*(a_v + b_v);

 // store back result into output array
 b_v.store(&out[i]);
 }
// tail part of loop has to follow
}

Example of Vc programming

void foo(double const *a,
 double const *b,
 double * out, int np){
 for(int i=0;i<np;i++)
 {
 out[i]=b[i]*(a[i]+b[i]);
 }
}

example in plain C

although simple and data parallel
(probably) does not vectorize without
further hints to the compiler (“restrict”)

example in Vc

restructuring the loop stride

explicit inner vector declaration

always vectorizes (no other hints
necessary)

architecture independent because
Vc::double_v::Size is template constant
determined at compile time

portable

branches/masks supported

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Example with Intel Cilk Plus Array Notation

// CEAN example
void foo(double const * a,
 double const *b,
 double * out, int np)
{
 int const VecSize=4;
 for(int i=0;i<np;i+=VecSize)
 {
 // cast input as fixed size vector
 double const (*av)[VecSize] = (double const (*)[VecSize]) &a[i];
 double const (*bv)[VecSize] = (double const (*)[VecSize]) &b[i];

 // give compiler hints
 __assume_aligned(av,32);
 __assume_aligned(bv,32);

 // cast output as fixed size vector
 double (*outv)[VecSize] = (double (*)[VecSize]) &out[i];
 __assume_aligned(outv,32);

 // computation and storage in CILK PLUS ARRAY NOTATION
 // will vectorize

 outv[0][:] = bv[0][:]*(av[0][:] + bv[0][:]);
 }
}

Intel Cilk Plus Array Notation indicates to the compiler operations on parallel data and leads to better
autovectorization

Programming can be similar to Vc (but with seemingly more code bloat at the moment) -- somewhat
constructed example (is possible in easier manner as well)

working with small vectors of VecSize wanted because allows for “early returns”, finer control

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Memory Access Problem / Consideration

op op

input
structure
(AOS)

output vector

x y z x y z
particle 1 particle 2 particle3

a natural way to do vector processing of particles
would be AOS approach

above memory access pattern typical (3-to-1)

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Memory Access Problem / Consideration

op op

input
structure
(AOS)

output vector

x y z x y z
particle 1 particle 2 particle3

a natural way to do vector processing of particles
would be AOS approach

above memory access pattern typical (3-to-1) op

input
structure
(SOA)

output vector

x

y

z

x x

y y

z z

pa
rt

icl
e

1
pa

rt
icl

e
2

pa
rt

icl
e

3

SOA approach is better autovectorizable

memory access in SOA pattern also more efficient

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Status for more complex shapes
Polycone is one of the more important complex shape used in detector
descriptions

algorithm used in ROOT uses recursive function calls which are not directly
translatable to a Vc-type programming; similar for modern approach in USolids
which uses voxelization techniques

Using a simple brute force approach (for all particles just test all segments)
has shown to give performance improvements for smaller polycones

20

results
Most of of the polycones in CMS don’t

have many segments

by Juan Valles (CERN summer student)

Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

A differend kind of data parallelism

“From particle data parallelism to segment (data)
parallelism”

for large polycons could use try to vectorize over segments instead of
particles (currently developing)

similar idea could work even for voxelized / tesselated solids

21

another approach
Vectorize over the segments, not

over the tracks

Less segments need to be checked, sorted
in a list of vectors

Useful for large polycones

“evaluate distance to
shaded segments in

a vectorized fashion”

