
Refactoring and Optimizing 
Geometry Routines for (SIMD) 

Vector Particle Processing
-- goals and status report --

Geant4 collaboration meeting, Sevilla, 24.09.2013

Sandro Wenzel / CERN-PH-SFT
( for the “Geant-Vector Prototype” team )

R&D! 



Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Motivation
Explore possibilities to recast particle simulation so that it 

takes advantage from all performance dimensions/technologies



Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Motivation
Explore possibilities to recast particle simulation so that it 

takes advantage from all performance dimensions/technologies

In HEP, mainly to reduce memory footprint

Dimension 1 (“sharing data”) : multithreading/
multicore

Geant4 Release 10!



Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Motivation
Explore possibilities to recast particle simulation so that it 

takes advantage from all performance dimensions/technologies

In HEP, mainly to reduce memory footprint

Dimension 1 (“sharing data”) : multithreading/
multicore

Geant4 Release 10!

Currently not exploited because requires “parallel data” to 
work on

Dimension 1I (“troughput increase”) : incore micro-
parallelism or vectorization



Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Motivation
Explore possibilities to recast particle simulation so that it 

takes advantage from all performance dimensions/technologies

In HEP, mainly to reduce memory footprint

Dimension 1 (“sharing data”) : multithreading/
multicore

Geant4 Release 10!

Currently not exploited because requires “parallel data” to 
work on

Dimension 1I (“troughput increase”) : incore micro-
parallelism or vectorization

Research projects (GPU prototype and Geant-Vector Prototype) have 
started targeting beyond dimension I (see session Thursday):

parallel data (“baskets”) = particles from different events 
grouped by logical volumes 
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Commodity processors have vector registers on whose components    
(single) instruction can be performed in parallel (microparallelism)

Reminder of vector-microparallelism 
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CPU instruction

single instruction multiple data = SIMD
Examples of SIMD architectures: MMX, SSE, AVX, ...
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Commodity processors have vector registers on whose components    
(single) instruction can be performed in parallel (microparallelism)

Reminder of vector-microparallelism 

v w y zb c da

a*v b*w c*y d*z

CPU instruction

single instruction multiple data = SIMD
Examples of SIMD architectures: MMX, SSE, AVX, ...

a*v

CPU instruction

optimal usage (vector registers full) current usage (3/4 empty for AVX)

We are loosing factors!

a v
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1st Goal: Vector Processing in Simple Geometry 
Algorithms
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vector of  N particles

distFromInside
mothervolume

distFromInside
mothervolume

SIMD

1 result N results

Provide new interfaces to process baskets in basic geometry 
algorithms 

make efficient use of baskets and try to use SIMD vector instructions 
wherever possible (throughput optimization)

1. Milestone

Goal: Enable geometry components to process baskets/
vectors of data and study performance opportunities
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(simple) navigation versus vector navigation

transform 
coordinates to 
daughter frame

distToOutside
daughtervol

update step + 
boundary

NE
XT

 P
AR

TI
CL

E 
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next 
daughter volume

single particle flow

each particles undergoes a 
series of basic algorithms (with 
outer loop over particles)



Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Vector processing in complex algorithm: Scalar 
(simple) navigation versus vector navigation

transform 
coordinates to 
daughter frame

distToOutside
daughtervol

update step + 
boundary

NE
XT

 P
AR

TI
CL

E 
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next 
daughter volume

single particle flow

each particles undergoes a 
series of basic algorithms (with 
outer loop over particles)

distFromInside
mothervolume

pick next 
daughter volume

transform 
coordinates to 
daughter frame

distToOutside
daughtervol

update step + 
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

Each algorithm takes a basket 
of particles and spits out 
vectors to the next algorithms

2. Milestone



Sandro Wenzel Geant4 collaboration meeting, Sevilla, 24/09/2013

Vector processing in complex algorithm: Scalar 
(simple) navigation versus vector navigation

transform 
coordinates to 
daughter frame

distToOutside
daughtervol

update step + 
boundary

NE
XT

 P
AR

TI
CL

E 
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next 
daughter volume

single particle flow

each particles undergoes a 
series of basic algorithms (with 
outer loop over particles)

distFromInside
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pick next 
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transform 
coordinates to 
daughter frame

distToOutside
daughtervol

update step + 
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

Each algorithm takes a basket 
of particles and spits out 
vectors to the next algorithms

less function calls!

SIMD (SSE, AVX ) instructions

better code locality  (icache)

2. Milestone
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“autovectorization:” Let the compiler figure this out himself (without 
code changes). 

Pro: best option for portability and maintenance

Cons:  This currently never works ( but in a few cases )....

The programming model
In order to use SIMD CPU capabilities, need to emit special assembly instructions 
(“add” versus “vaddp”) to the hardware.

Multiple options exist:
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Status of simple shape/algorithm investigations
provided vector interfaces to all shapes and optimized code to simple shapes for 
functions

“ DistToInside”, “DistToOutside”, “Safety”, “IsInside/Contains”

here: using the ROOT shapes ( but USolids will come )

obtained good experience and results using the Vc programming model

For simple shapes the performance gains match our expectations
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Status of refactoring simple algorithms (II)

a lot of work still to do in SIMD-optimizing more complicated 
shapes; preliminary results available for Polycone (backup)

outside shapes, vector-optimized other simple algorithmic blocks:

coordinate and vector transformations (“master-to-local”)

min, max algorithms, ...
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 Benchmarking the Vector Navigation
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together to compare

vs

in: N particles in a logical volume

out: steps and next boundaries for N particles

scalar vector

(in reference frame of logical volume)
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Need a simple toy detector as logical volume

endcap (cone)

plate detectors

beampipe (tube)

tubular shield

implemented a toy detector for a benchmark (“not to easy; not too complex”): 2 tubes, 4 
plate detectors, 2 endcaps (cones), 1 tubular mother volume

Logical volume filled with testparticle pool (random 
position and random direction) from which we use 
a subset N for benchmarks (P repetitions)
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Results from Benchmark: Overall Runtime
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total speedup of 3.1

time of processing/navigating N particles ( P repetitions) using scalar algorithm 
(ROOT) versus vector version

some further gain 
with AVX

already gain 
considerably for small 
N

there is an optimal 
point of operation 
(performance 
degradation for large 
N)

excellent speedup for 
SSE4 version
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Further Metrics: Executed Instructions
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investigate origin of speedup: study hardware performance counters

developed a “timer” based approach where we read out counter before and after 
an arbitrary code section ( using libpfm )

gain mainly due to 
less instructions 
(for the same work)

 comparison for N=1024 particles 
(AVX versus ROOT seq)

detailed analysis (binary 
instrumentation) can 
give statistics, e.g.:

ROOT Vec

MOV 30% 15%

CALL 4% 0.4%

V..PD 
(SIMD 
instr)

5% 55%
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Further Metrics: L1 instruction cache misses

The number of instruction cache misses is lower in vector treatment, as 
predicted. Effect will become more important when navigation itself 
embedded in more complex environment.
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Further Metrics: total cache misses
However, vector version suffers from more data cache misses for large 
number of particles, responsible for the observed performance degradation

likely due to structure-of-array usage in vector case ( versus array of 
structures in ROOT case)

Once we know realistic N, might have to reconsider this option
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Summary / Outlook
Summary

vectorization is not threading and needs to be cared for 
additionally!
a vector/basket centric architecture allows to make use of 
SIMD instruction sets, needs less functions calls, and is more 
instruction cache friendly
provided a first refactored vector API in ROOT geometry/
navigation library and showed good performance gains for 
individual as well as complex algorithms on commodity 
hardware
Very good experience with explicit vector oriented 
programming model (Vc, Intel Cilk Plus Arrays)
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Summary / Outlook

more complex shapes and algorithms ( voxelization ), USolids ...

Xeon Phi, (GPU)

full flow of vectors in Geant-V prototype

Outlook

Summary
vectorization is not threading and needs to be cared for 
additionally!
a vector/basket centric architecture allows to make use of 
SIMD instruction sets, needs less functions calls, and is more 
instruction cache friendly
provided a first refactored vector API in ROOT geometry/
navigation library and showed good performance gains for 
individual as well as complex algorithms on commodity 
hardware
Very good experience with explicit vector oriented 
programming model (Vc, Intel Cilk Plus Arrays)
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Notes on benchmark conditions

System: Ivybridge iCore7 (4 core, not hyperthreaded (can read out 
8hardware performance counters))

Compiler: gcc4.7.2 ( compile flags -O2 -unroll-loops -ffast-math -mavx)

OS: slc6

Vc version: 0.73

benchmarks usually run on empty system with cpu pinning (taskset -c  )

benchmarks use preallocated pool of testdata, in which we take out N particles 
for processing. Repeat this P times. For repetitions distinguish between random 
access of N particles (higher cache impact) or sequential access in datapool (as 
shown here)

benchmarks shown use NxP=const to time an overall similar amount of work
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void foo(double const *a,
         double const *b,
         double * out, int np){
    for(int i=0;i<np;i+=Vc::double_v::Size)
    {
        // fetch chunk of data into Vc vector
        Vc::double_v a_v(&a[i]);
        Vc::double_v b_v(&b[i]);
        
        // computation just as before
        b_v = b_v*(a_v + b_v);
        
        // store back result into output array
        b_v.store( &out[i] );
    }
// tail part of loop has to follow
}

Example of Vc programming

void foo(double const *a,
         double const *b,
         double * out, int np){
    for(int i=0;i<np;i++)
    {
        out[i]=b[i]*(a[i]+b[i]);
    }
}

example in plain C

although simple and data parallel  
(probably) does not vectorize without 
further hints to the compiler (“restrict”)

example in Vc

restructuring the loop stride

explicit inner vector declaration

always vectorizes (no other hints 
necessary)

architecture independent because 
Vc::double_v::Size is template constant 
determined at compile time

portable

branches/masks supported
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Example with Intel Cilk Plus Array Notation

// CEAN example
void foo(double const * a,
         double const *b,
         double * out, int np)
{
    int const VecSize=4;
    for(int i=0;i<np;i+=VecSize)
    {
        // cast input as fixed size vector
        double const (*av)[VecSize] = (double const (*)[VecSize]) &a[i];
        double const (*bv)[VecSize] = (double const (*)[VecSize]) &b[i];
        
        // give compiler hints
        __assume_aligned(av,32);
        __assume_aligned(bv,32);
        
        // cast output as fixed size vector
        double (*outv)[VecSize] = (double (*)[VecSize]) &out[i];
        __assume_aligned(outv,32);
        
        // computation and storage in CILK PLUS ARRAY NOTATION
        // will vectorize     

     outv[0][:] = bv[0][:]*(av[0][:] + bv[0][:]);
    }
}

Intel Cilk Plus Array Notation indicates to the compiler operations on parallel data and leads to better 
autovectorization

Programming can be similar to Vc (but with seemingly  more code bloat at the moment) -- somewhat 
constructed example ( is possible in easier manner as well )

working with small vectors of VecSize wanted because allows for “early returns”, finer control
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Memory Access Problem / Consideration 

op op

input 
structure
(AOS)

output vector

x y z x y z
particle 1 particle 2 particle3

a natural way to do vector processing of particles 
would be AOS approach

above memory access pattern typical (3-to-1)
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SOA approach is better autovectorizable

memory access in SOA pattern also more efficient
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Status for more complex shapes
Polycone is one of the more important complex shape used in detector 
descriptions

algorithm used in ROOT uses recursive function calls which are not directly 
translatable to a Vc-type programming; similar for modern approach in USolids  
which uses voxelization techniques

Using a simple brute force approach ( for all particles just test all segments ) 
has shown to give performance improvements for smaller polycones

20

results
Most of of the polycones in CMS don’t 

have many segments

by Juan Valles (CERN summer student)
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A differend kind of data parallelism

“From particle data parallelism to segment (data) 
parallelism”

for large polycons could use try to vectorize over segments instead of 
particles ( currently developing )

similar idea could work even for voxelized / tesselated solids

21

another approach
Vectorize over the segments, not

over the tracks

Less segments need to be checked, sorted
in a list of vectors

Useful for large polycones

“evaluate distance to 
shaded segments in  

a vectorized fashion”


