
GPU Prototype

J. Apostolakis, P. Canal, D. Elvira, S.Y. Jun
CERN/Fermilab

Geant4 Collaboration Meeting
Seville, Spain

September 23 – 27, 2013

Introduction

!  Future HEP software for HPC/HTC
!  hardware landscape is rapidly changing for power

efficiency (advent of the many core era)
!  parallelism is no longer optional, but it must be

explored thoroughly and present many challenges
!  maximize instruction throughput and data locality

!  Our vision for HEP/HPC detector simulation
!  to have a massively parallelized particle (track level)

transportation engine
!  comply with different architectures (GPU, MIC and etc.)
!  draw community interests for collateral efforts

9/26/2013 Geant4 Collaboration Meeting @Seville 2

Detector Simulation in GPU
as a show-case

!  Geant4 for detect simulation
!  highly sequential to reduce

memory requirement (if-else)
!  event-level parallelism to take

an advantage of using clusters
!  provided high-quality detector

simulation for HEP

!  GPU (CUDA) applications
!  require maximum SIMD/SIMT in

conjunction with TLP
!  a good example of hybrid HPC

(CPU/GPU work/load balancing)
!  many opportunities for challenging

development in algorithms and
efficient memory managements

9/26/2013 Geant4 Collaboration Meeting @Seville 3

Problem Statement

!  Develop a massively parallelized EM particle
transportation engine for many-core architects

!  Key components for a (GPU) prototype
!  transportation (in a realistic magnetic field)
!  geometry (a simple detector description)
!  EM physics (electrons and photons)
!  concurrent CUDA kernels

!  Consideration for GPU applications
!  reduce branches (avoid thread-level divergences)
!  reuse data (efficient memory transactions, latencies)
!  pRNG, floating-point, multiple streams and etc.

9/26/2013 Geant4 Collaboration Meeting @Seville 4

Overview of key components

9/26/2013 Geant4 Collaboration Meeting @Seville 5

Overview of GPU Kernels

!  Asynchronous data transfer (tracks from a dispatcher)

!  Other input data (one time allocation on global memory)
!  random states (MTwister) for each thread

!  detector geometry and a magnetic field map

!  physics tables (x-secs, brem, ionization tables, and etc.)

!  containers for secondary tracks/temporary stacks

!  Stepping/tracking (split) kernels
!  GPIL-kernel

!  sorting tracks by the physics process

!  DoIt –kernel

!  Also separate kernels for electrons and photons
9/26/2013 Geant4 Collaboration Meeting @Seville 6

Performance
!  Hardware (host + device)

!  Performance measurement
!  (4096x32) tracks
!  Gain = Time(1 CPU core)/Time(total GPU cores)

Time=(data transfer + kernel execution)
!  default <<< Block, Thread >>> organization

M2090<<<32,128>>> and K20<<<26,198>>>

 9/26/2013 Geant4 Collaboration Meeting @Seville 7

Host (CPU) Device (GPU)

M2090 AMD Opertron™ 6134
32 cores @ 2.4 GHz

Nvidia M2090 (Fermi)
512 cores @ 1.3 GHz

K20 Intel® Xeon® E5-2620
24 cores @ 2.0 GHz

Nvidia K20 (Kepler)
2496 cores @ 0.7GHz

Particle Transportation
!  Transport a particle for a proposed step length in a

magnetic field (volume based CMS B-field map)
!  photon kernel: linear navigator
!  electron: propagation in a magnetic field

!  Arithmetic intensity of the adaptive step control
!  occupancy/off-chip memory operand is low
!  data transfers between host and device >> kernel time

!  A full chain of transportation requires geometry
!  geometry intersect and other decision trees
!  add intensity, but also introduce kernel divergence and

memory operands (require optimization for SIMT)

9/26/2013 Geant4 Collaboration Meeting @Seville 8

Performance - Transportation
!  Decompose transportation by the particle type

!  separate kernels is ~30% faster for �:e- = 0.2:0.8 mixture

!  Performance of numerical algorithms for the equation
of motion of a charged particle in a magnetic field

GPU Type Algorithm CPU[ms] GPU[ms] Kernel[ms] CPU/GPU CPU/Kernel

Classical RK4 106.9 9.7 2.6 10.9 41.0

M2090 RK-Felhberg 119.3 9.9 2.8 12.0 42.3

Nystrom RK4 39.4 7.9 0.8 5.0 51.8

Classical RK4 78.6 4.5 1.7 17.5 47.4

K20 RK Felhberg 87.9 4.4 1.6 19.8 55.2

Nystrom RK4 30.9 3.5 0.7 8.6 46.9

9/26/2013 Geant4 Collaboration Meeting @Seville 9

Geometry

!  A set of geometry classes to support EM physics and
the particle transportation
!  material (element, material and Sandia table)

!  solids (box, tubs and etc.) and logical/physical vol.
!  Navigator, multilevel locator

!  A simple, but realistic detector is constructed on CPU
and re-mapped on GPU global memory

!  Create a navigator per thread on GPU and reuse it
(locating the global position is expensive)

9/26/2013 Geant4 Collaboration Meeting @Seville 10

EM Physics
!  Processes and models implemented

!  Use look-up tables for lambda and other parameters
for energy loss and sampling

!  Secondary particles are stored atomically on GPU,
and may be transported to CPU or rescheduled for
the next tracking cycle on GPU

9/26/2013 Geant4 Collaboration Meeting @Seville 11

Global Memory
!  EM physics processes and models require frequent data

access from/to global memory
!  input: material information, physics tables
!  output: secondary particles (N=0,1,2 per step) and hits

!  Memory transaction (atomic add) for 100K secondaries

!  Strategies for secondary particles, hits and etc.
!  any dynamic memory allocation is very expensive
!  use pre-allocated memory (a fixed size stack on GPU)

NVIDIA M2090 <<<32,128>>> GPU [ms] CPU [ms]

Pre-allocated fixed memory 1.5 39.5

Dynamic allocation per thread 49.8 59.1

Dynamic allocation per block 79.0 59.0

9/26/2013 Geant4 Collaboration Meeting @Seville 12

Data Structure
!  Coalesced global memory access

!  align memory address for efficient data access

!  Array of Struct (AoS) vs. Struct of Array (SoA)
!  a simple test of loading data (4-doubles, 8-doubles) and

writing back to the global memory (65K accesses)

!  CPU: really depends in the size of data and architecture

0

0.1

0.2

M2090
4-doubles

M2090
8-doubles

K20
4-doubles

K20
8-doubles

AoS

SoA

9/26/2013 Geant4 Collaboration Meeting @Seville 13

Floating-point Consideration
!  Cost for double-precision

!  memory throughput (x2)

!  possible registers spilling

!  cycles for arithmetic instructions
(x2/x3 in M2090/K20)

!  performance in classical RK4:
float/double = 2.24 (M2090)

!  not negotiable for precision and
accuracy

!  Possibilities for single-precision
!  input physics tables

!  B-field map (texture)

!  local coordination

9/26/2013 Geant4 Collaboration Meeting @Seville 14

Random Number Generators
!  SIMD random number engine in each thread

!  CUDA pRNG library (CURAND)
!  xor-family (XORWOW)

!  L’Ecuyer’s multiple recursive generator (MRG32k3a)
!  Mersenne Twister (MTGP32, 32bit, period 2^11213)

!  Performance: (64 blocks x 256 threads)
!  two kernels (initialize states, generation) for efficiency

CURAND pRNG Init States [ms] 10K RNG [ms]

XORWOW 4.12 7.92

MRG32k3a 5.02 21.88

MTG32 0.69 31.94

9/26/2013 Geant4 Collaboration Meeting @Seville 15

Performance: Realistic Simulation

!  A simple calorimeter (a.k.a CMS Ecal)

!  Tracking for 1-step: split kernels (GPIL+sorting+DoIt)

 ()* GPU time using one kernel (sequential stepping)

!  Optimization strategies
!  kernel basis (high-level restructuring)
!  component basis (low-level improvement by profilers)

CPU [ms] GPU [ms] CPU/GPU

AMD+M2090 748 37.8 (62.6)* 19.8 (11.9)*

Intel®+K20M 571 30.4 (81.9)* 18.7 (7.0)*

9/26/2013 Geant4 Collaboration Meeting @Seville 16

Other Considerations
!  Understanding performance of sub-components

!  profiled each physics process/model
!  identified divergent instructions (inefficient sampling for

parallel execution, do-while, …)
!  unit tests for algorithms and data structure

!  Efficient sorting without using thrust::sort
(bucket-based sorting)

!  Multiple streams and concurrent kernels

!  Validation
!  device codes vs. identical host codes (executed on CPU)
!  host codes vs. back-ported CPU codes

9/26/2013 Geant4 Collaboration Meeting @Seville 17

GPU Connector to an External Scheduler

!  Vector Prototype (presentation by Federico) can serve
as the track buckets provider to the GPU prototype

!  GPU connector is an interface to the Vector Prototype

!  Challenges
!  different geometry implementation – need to translate

location and history information back and forth
!  difference in data layout

!  only a subset of particle can be handled
!  (ideal) bucket size very different from CPU

!  try to maximize kernel coherence

9/26/2013 Geant4 Collaboration Meeting @Seville 18

GPU Connector to the Vector Prototype

!  Implementation
!  send back to CPU particles not handled

!  stage particles in a set of buckets
!  list and type of bucket is customizable, one idea is to

buckets based on particle/energy that have a common
(sub)set of likely to apply physics.

!  within this baskets the particles are placed in order/group
given by the VP

!  delay the start of a kernel/task until it has enough data
or has not received any new data in a while

!  to maximize overlap uploads are started for a task after
handling a CPU basket

9/26/2013 Geant4 Collaboration Meeting @Seville 19

Future Plan
!  Continue integration with the vector prototype

!  demonstrate a working example with the connector
!  share components (geometry, physics, transport and

data structure)

!  Redesign the prototype optimally for SIMT/SIMD
!  minimize branches (granulize tasks)
!  maximize locality (instruction and memory)
!  efficient data structure, algorithms and kernel managers

for leveraging parallelism/vectorization

!  Consideration for hybrid computing models
!  MIC (TBB), OpenCL and etc.

9/26/2013 Geant4 Collaboration Meeting @Seville 20

