
Sandro Wenzel / CERN PH-SFT

G4 Profiling and
performance news from

ALICE

Geant4 collaboration meeting, Sevilla, 24.09.2013

Sandro Wenzel, 24.09.2013

Situation:

ALICE simulation is currently based on Geant3 (Fortran, no active
development)

ALICE potentially likes to move to Geant4 9.6

however, currently rather large performance gap (factor 3 between
Geant3 and Geant4) which should be made as small as possible

Started systematic Geant4 benchmarking effort
in ALICE

Sandro Wenzel, 24.09.2013

Outline:

Part I:

Situation:

ALICE simulation is currently based on Geant3 (Fortran, no active
development)

ALICE potentially likes to move to Geant4 9.6

however, currently rather large performance gap (factor 3 between
Geant3 and Geant4) which should be made as small as possible

Started systematic Geant4 benchmarking effort
in ALICE

first profiling results: identification of (unexpected) hot-
spot related to memory management

opportunities from fast-math librariesPart II:

Part III: first results from tuning simulation parameters (step size)

Sandro Wenzel, 24.09.2013

Tools / Approaches

Valgrind
full callgraph, profile and hotspot identification

“time” spent in functions/libraries

expensive (but “nightly” affordable): Ca. 90min for one (medium) event in
ALICE on iCore7.

igprof, ...
often used at CERN (statistical sampling)

Intel PIN Tools
freely available instrumentation API used by all the Intel tools

fully programmable instrumentation. Can give you exactly the
information you want to know.

suited to log information on physics level: properties of particles,
where they go in detector, etc. (see also tool by Andrei Gheatta)

Understand what’s going on:

Sandro Wenzel, 24.09.2013

Tools / Approaches

Valgrind
full callgraph, profile and hotspot identification

“time” spent in functions/libraries

expensive (but “nightly” affordable): Ca. 90min for one (medium) event in
ALICE on iCore7.

igprof, ...
often used at CERN (statistical sampling)

Intel PIN Tools
freely available instrumentation API used by all the Intel tools

fully programmable instrumentation. Can give you exactly the
information you want to know.

suited to log information on physics level: properties of particles,
where they go in detector, etc. (see also tool by Andrei Gheatta)

Understand what’s going on:

Sandro Wenzel, 24.09.2013

Benchmark environments

os proc mem machine compiler

SLC6
iCore7

(3.4GHz, 4cores,
no HT)

8GB phpcsft96 gcc/4.7

SLC5
Intel Xeon

(2.5 GHz, 4cores)
16GB lxplus302 gcc/4.3.6

SLC5
Intel Xeon

(2.27GHz, 8cores)
48GB lxbuild175 gcc/4.3.6

Geant4 version 9.6.p01 (tarball)

build with cmake (Release or RelwithDebInfo)

in each case built whole ppbench software stack with the
corresponding compiler version

Sandro Wenzel, 24.09.2013

Valgrind snapshot
run simulation for 1 event (including initialization and digitization) with
valgrind

Sandro Wenzel, 24.09.2013

Valgrind snapshot
run simulation for 1 event (including initialization and digitization) with
valgrind

resulting profile shows a whole list of important regions with reasonable
contributions (digitization, G4processes , math functions ...)

– libm ~9% – G4processes ~8% – AliTPC~7%

Sandro Wenzel, 24.09.2013

Valgrind snapshot
run simulation for 1 event (including initialization and digitization) with
valgrind

surprisingly G4geometry as largest contributor caused mostly by one
unusual class G4EnhancedVecAllocator

resulting profile shows a whole list of important regions with reasonable
contributions (digitization, G4processes , math functions ...)

– libm ~9% – G4processes ~8% – AliTPC~7%

Sandro Wenzel, 24.09.2013

Valgrind snapshot
run simulation for 1 event (including initialization and digitization) with
valgrind

15% of simulation time
are spent in particular
memory allocations
and deallocations of
G4NavigationLevels

surprisingly G4geometry as largest contributor caused mostly by one
unusual class G4EnhancedVecAllocator

resulting profile shows a whole list of important regions with reasonable
contributions (digitization, G4processes , math functions ...)

– libm ~9% – G4processes ~8% – AliTPC~7%

Sandro Wenzel, 24.09.2013

G4EnhancedVecAllocator

G4EnhancedVecAllocator used only in class G4NavigationHistory

G4NavigationHistory

G4TouchableHistory

G4NavigationLevelN1
1

G4NavigationHistory has vector of G4NavigationLevels.

std::vector< G4NavigationLevel, G4EnhancedVecAllocator < G4NavigationLevel > > fNavHistory

“Responsible for maintenance of the history of paths
taken through the geometrical hierarchy”

Sandro Wenzel, 24.09.2013

G4EnhancedVecAllocator

G4EnhancedVecAllocator used only in class G4NavigationHistory

G4NavigationHistory

G4TouchableHistory

G4NavigationLevelN1
1

G4NavigationHistory has vector of G4NavigationLevels.

std::vector< G4NavigationLevel, G4EnhancedVecAllocator < G4NavigationLevel > > fNavHistory

purpose of enhanced allocator is to optimize memory management for
vectors of G4NavigationLevel (avoid memory fragmentation)

what happens if we use standard C++ allocator instead?
std::vector< G4NavigationLevel> fNavHistory

“Responsible for maintenance of the history of paths
taken through the geometrical hierarchy”

Sandro Wenzel, 24.09.2013

comparison results: total simulation time

timing results on my iCore7 (i7-3770, 3.4GHz) , gcc4.7

both allocator version give identical simulation results

0

350

700

1050

1400

5 events 10 events

G4EnhAlloc std::Alloc

ru
nt

im
e

in
 s

ec
on

ds

version built with std::allocator systematically faster

Events runtime
 ratio

5 1.22

10 1.34

20 1.32

Mean performance difference

Sandro Wenzel, 24.09.2013

Influence of compiler, OS?

os proc mem machine compiler
runtime

ratio

SLC6
iCore7

(3.4GHz,
4cores)

8GB phpcsft96 gcc/4.7 1.34

SLC5
Intel Xeon
(2.5 GHz,
4cores)

16GB lxplus302 gcc/4.3.6 1.32

SLC5
Intel Xeon
(2.27GHz,
8cores)

48GB lxbuild175 gcc/4.3.6 1.35

runtime difference observed consistently on different
machines/compiler versions (here for N=10 events)

get performance difference also with Intel compiler (v13)

but should extend tests to different platforms (Mac)

Sandro Wenzel, 24.09.2013

Comparison per event (10event run)

G4EnhAlloc std::Alloc

0

100

200

300

400

Event1 Event2 Event3 Event4 Event5 Event6 Event7 Event8 Event9 Event10

9.2% 6.5%
21.3%

0%

45.1% 30.2% 42.2%

6.4% 8.5%

93.6%

ru
nt

im
e

in
 s

ec
on

ds

study performance difference per event in 10 event run

correlation between total runtime and performance penalty?

Sandro Wenzel, 24.09.2013

Part II: Investigating Alternatives to Libm

Commercial or closed source libraries
Intel math library

AMD libm

 open source alternatives
VDT (CMS/CERN development)

By default, Geant4 uses GNU math library (on linux, Mac)
rocksolid, but not fastest implementation around

Started investigations to quantify opportunities from using faster
(less precise) libraries:

PIPARO, D., INNOCENTE, V. and HAUTH, Th.

svnweb.cern.ch/trac/vdt or: github.com/drbenmorgan/vdt

Sandro Wenzel, 24.09.2013

Quantification of speedup-opportunity
simulate 100 events in AliRoot / Geant4.9.6.p1
concentrate on Geant4 speedup: time the runloop (no digitization!)

12695 s

10756 s

Significant gains!

Speedup of AMD libm
and VDT almost equal

selection and usage of fast-math library by LD_PRELOAD:
“export LD_PRELOAD = ..libvdt.so”
no recompilation necessary but performance gain might be smaller
than a compile time inclusion

Sandro Wenzel, 24.09.2013

Part III: Tuning Simulation Parameters

ALICE (Ivana!) started efforts to tune simulation parameters to
optimize runtime

Up until now, a small step limit was imposed in low
density materials (too many steps done in comparison to real
geometry steps, physical steps) although geometry/physical step
could be much larger

A way to control/play with this step implemented. First results
(when limiting this step to 10m in low density materials) are
available

Sandro Wenzel, 24.09.2013

Std::AllocatorStd::Allocator

5680 4430

5148 4470

New Status 09/2013

EnhAllocatorEnhAllocator

cmath 7400 6400

vdt 6500 6400

time in seconds for N=50 events (Geant4 runloop)

default step large step limit default step large step limit

rerun measurements with new software versions (Geant4.9.6p2, new SLC6
libm, ...) with all possible combinations of tunings

preliminary; validation outstanding

Sandro Wenzel, 24.09.2013

Std::AllocatorStd::Allocator

5680 4430

5148 4470

New Status 09/2013

EnhAllocatorEnhAllocator

cmath 7400 6400

vdt 6500 6400

time in seconds for N=50 events (Geant4 runloop)

default step large step limit default step large step limit

change in allocator biggest improvement

removal of step limitation important but no orthotogal with fast-math; this
indicates that overall “exp” and “log” become much less important

with step limitation, use of fast-math relevant

rerun measurements with new software versions (Geant4.9.6p2, new SLC6
libm, ...) with all possible combinations of tunings

total gain 1.65
preliminary; validation outstanding

Sandro Wenzel, 24.09.2013

Backup slides

Sandro Wenzel, 24.09.2013

towards a physics validation
Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

All tests use Geant4
9.6.p01 (std::alloc),

compiled with gcc/4.7 on
SLC6/SLC5

based on slides by D. Piparo / CERN

Sandro Wenzel, 24.09.2013

towards a physics validation
Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

given same sequence of events + random numbers, would ideally expect same
number of Geant4 step lengths for all math libraries

All tests use Geant4
9.6.p01 (std::alloc),

compiled with gcc/4.7 on
SLC6/SLC5

based on slides by D. Piparo / CERN

Sandro Wenzel, 24.09.2013

towards a physics validation
Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

given same sequence of events + random numbers, would ideally expect same
number of Geant4 step lengths for all math libraries

instructive to check this taking the libm but different kernels (slc5 - slc6)

All tests use Geant4
9.6.p01 (std::alloc),

compiled with gcc/4.7 on
SLC6/SLC5

based on slides by D. Piparo / CERN

Sandro Wenzel, 24.09.2013

towards a physics validation
Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

given same sequence of events + random numbers, would ideally expect same
number of Geant4 step lengths for all math libraries

instructive to check this taking the libm but different kernels (slc5 - slc6)

All tests use Geant4
9.6.p01 (std::alloc),

compiled with gcc/4.7 on
SLC6/SLC5

based on slides by D. Piparo / CERN

Sandro Wenzel, 24.09.2013

towards a physics validation
Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

given same sequence of events + random numbers, would ideally expect same
number of Geant4 step lengths for all math libraries

instructive to check this taking the libm but different kernels (slc5 - slc6)

All tests use Geant4
9.6.p01 (std::alloc),

compiled with gcc/4.7 on
SLC6/SLC5

vdt, amd induce just same kind of variability !! (on slc6)

based on slides by D. Piparo / CERN

Sandro Wenzel, 24.09.2013

This is encouraging!

Complete validation
needed for final sign-off!

towards a physics validation
Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

given same sequence of events + random numbers, would ideally expect same
number of Geant4 step lengths for all math libraries

instructive to check this taking the libm but different kernels (slc5 - slc6)

All tests use Geant4
9.6.p01 (std::alloc),

compiled with gcc/4.7 on
SLC6/SLC5

vdt, amd induce just same kind of variability !! (on slc6)

based on slides by D. Piparo / CERN

Sandro Wenzel, 24.09.2013

Next steps

study memory impact of using std::allocator

physics validation

do next cycle of benchmarks (with improvements included)

get modified costs and new important code sections

digitization is a large part to tackle (preliminary performance
increase) but more or less independent of G4

