
G4 Profiling and performance news from ALICE

Sandro Wenzel / CERN PH-SFT

Geant4 collaboration meeting, Sevilla, 24.09.2013

Situation:

- ALICE simulation is currently based on Geant3 (Fortran, no active development)
- * ALICE potentially likes to move to Geant4 9.6
- * however, currently rather large performance gap (factor 3 between Geant3 and Geant4) which should be made as small as possible

Situation:

- ALICE simulation is currently based on Geant3 (Fortran, no active development)
- * ALICE potentially likes to move to Geant 9.6
- * however, currently rather large performance gap (factor 3 between Geant3 and Geant4) which should be made as small as possible

Outline:

- * **Part I:** first profiling results: identification of (<u>unexpected</u>) hotspot related to memory management
- *** Part II**: opportunities from fast-math libraries

* **Part III**: first results from tuning simulation parameters (step size)

Tools / Approaches

Understand what's going on:

- full callgraph, profile and hotspot identification 0
- "time" spent in functions/libraries 0

expensive (but "nightly" affordable): Ca. 90min for one (medium) event in 0 ALICE on iCore7.

often used at CERN (statistical sampling) 0

Intel PIN Tools

- freely available instrumentation API used by all the Intel tools 0
- fully programmable instrumentation. Can give you exactly the 0 information you want to know.
- suited to log information on physics level: properties of particles, 0 where they go in detector, etc. (see also tool by Andrei Gheatta)

Tools / Approaches

Understand what's going on:

- full callgraph, profile and hotspot identification 0
- "time" spent in functions/libraries 0

expensive (but "nightly" affordable): Ca. 90min for one (medium) event in 0 ALICE on iCore7.

often used at CERN (statistical sampling) 0

Intel PIN Tools

freely available instrumentation API used by all the Intel tools 0

- fully programmable instrumentation. Can give you exactly the 0 information you want to know.
- suited to log information on physics level: properties of particles, 0 where they go in detector, etc. (see also tool by Andrei Gheatta)

Benchmark environments

Geant4 version **9.6.p01** (tarball)

build with cmake (Release or RelwithDebInfo)

in each case built whole **ppbench** software stack with the corresponding compiler version

OS	proc	mem	machine	compiler
SLC6	iCore7 (3.4GHz, 4cores, no HT)	8GB	phpcsft96	gcc/4.7
SLC5	Intel Xeon (2.5 GHz, 4cores)	I6GB	lxplus302	gcc/4.3.6
SLC5	Intel Xeon (2.27GHz, 8cores)	48GB	lxbuild I 75	gcc/4.3.6

run simulation for <u>l event</u> (including initialization and digitization) with valgrind

run simulation for <u>I event</u> (including initialization and digitization) with valgrind

resulting profile shows a whole list of important regions with reasonable contributions (digitization, G4processes , math functions ...)

– libm ~9% – G4processes ~8% – AliTPC~7%

5	k

run simulation for <u>I event</u> (including initialization and digitization) with valgrind

resulting profile shows a whole list of important regions with reasonable contributions (digitization, G4processes , math functions ...)

– libm ~9% – G4processes ~8% – AliTPC~7%

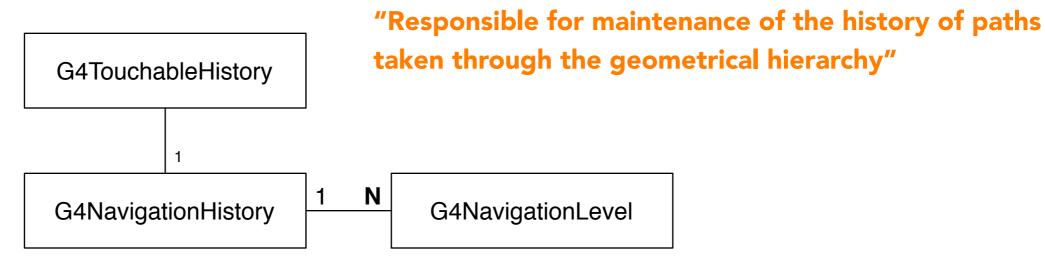
surprisingly **G4geometry** as largest contributor caused mostly by **one** unusual class **G4EnhancedVecAllocator**

<u>File View Go</u> <u>Settings</u> <u>H</u> elp						
Open Image: Compared Sector Forward Image: Cycle Detection Image: Cycle Detection Image: Cycle Detection Image: Cycle Detection Image: Cycle Detection Image: Cycle Detection Image: Cycle Detection Image: Cycle Detection Image: Cycle Detection Image: Cycle Detection						
Flat Profile	₽×					
Search: Class	•					
Self Class	_					
23.25 (global)						
I 15.04 G4EnhancedVecAllocator <g4navigationlevel></g4navigationlevel>						
6.54 AliTPC						
4.94 G4Region						
4.84 AliSimDigits						
3.70 TObjArray	3.70 TObjArray					
Incl. Self Called Function Location						
8.10 8.10 1 305 674 G4EnhancedVecAllocator <g4navigationlevel>::allocate(unsigned long) libG4geometry.so: G4Enhan</g4navigationlevel>						
6.94 6.94 1 305 673 G4EnhancedVecAllocator <g4navigationlevel>::deallocate(G4Navigatio libG4geometry.so: G4Enhan</g4navigationlevel>						

run simulation for <u>I event</u> (including initialization and digitization) with valgrind

resulting profile shows a whole list of important regions with reasonable contributions (digitization, G4processes, math functions ...)

– libm ~9% – G4processes ~8% – AliTPC~7%

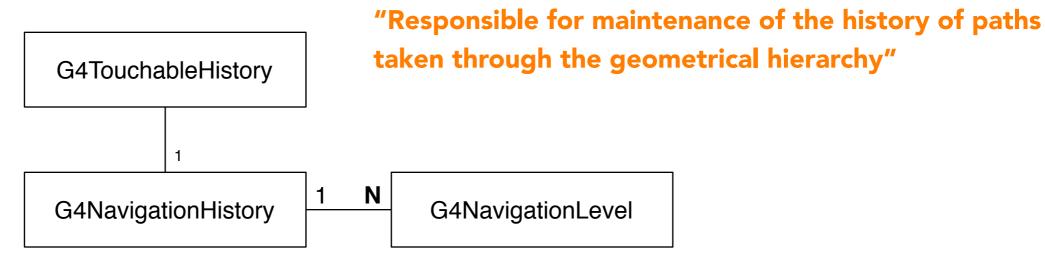


surprisingly G4geometry as largest contributor caused mostly by one unusual class G4EnhancedVecAllocator

<u>File View G</u> o	<u>S</u> ettings <u>H</u> elp		
Open Back	Forward Up % <	ction Fetch	
Flat Profile			
Search:		15% of simulation time	9
Self	Class		
23.25	(global)	are spent in particular	
	A ■ G4EnhancedVecAllocator <g4navigationlevel></g4navigationlevel>	memory allocations	
	G4Region	-	
4.84	1_AliSimDigits	and deallocations of	
3.70	0 ■ TObjArray		
, Incl. Self	Called Function	G4NavigationLevels	
	1 305 674 G4EnhancedVecAllocator <g4navigationlevel>::allocate(un</g4navigationlevel>		
694 694	1 305 673 GAEnhancedVecAllocator <ganavigationlevel>deallocate</ganavigationlevel>	(GANavigatio libGAgeometry so: GAEnhan	

G4EnhancedVecAllocator

G4EnhancedVecAllocator used only in class **G4NavigationHistory**



G4NavigationHistory has vector of **G4NavigationLevels**.

std::vector< G4NavigationLevel, G4EnhancedVecAllocator < G4NavigationLevel > > fNavHistory

G4EnhancedVecAllocator

G4EnhancedVecAllocator used only in class G4NavigationHistory

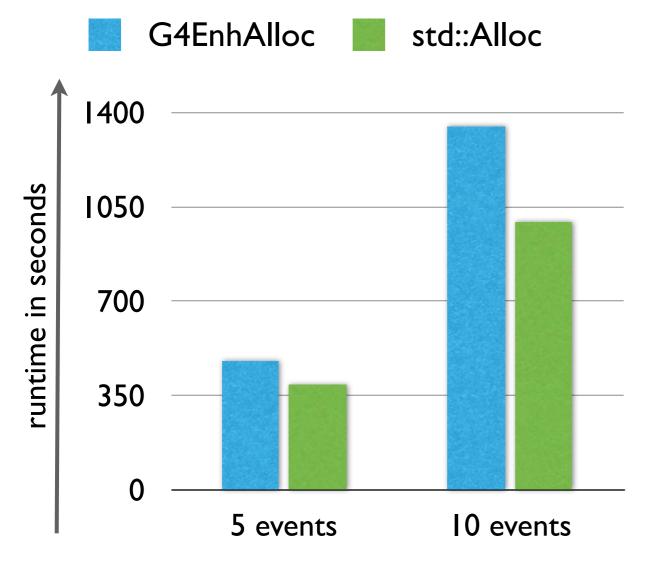
G4NavigationHistory has vector of **G4NavigationLevels**.

std::vector< G4NavigationLevel, G4EnhancedVecAllocator < G4NavigationLevel > > fNavHistory

purpose of enhanced allocator is to **optimize memory management** for vectors of G4NavigationLevel (avoid memory fragmentation)

what happens if we use standard C++ allocator instead? std::vector< G4NavigationLevel> fNavHistory

comparison results: total simulation time


timing results on my iCore7 (i7-3770, 3.4GHz), gcc4.7

both allocator version give identical simulation results

version built with std::allocator systematically faster

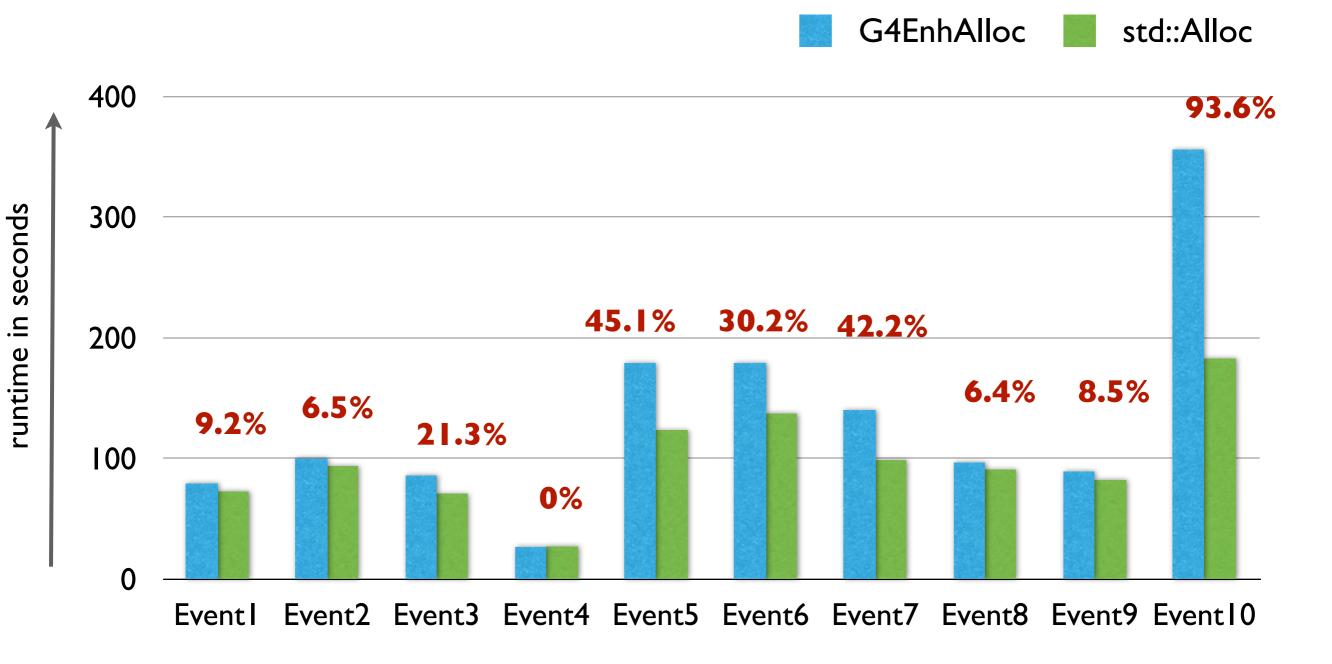
Mean performance difference

# Events	runtime ratio		
5	I.22		
10	I.34		
20	I.32		

Influence of compiler, OS?

runtime difference observed consistently on different machines/compiler versions (here for N=10 events)

OS	proc	mem	machine	compiler	runtime ratio
SLC6	iCore7 (3.4GHz, 4cores)	8GB	phpcsft96	gcc/4.7	I.34
SLC5	Intel Xeon (2.5 GHz, 4cores)	I6GB	lxplus302	gcc/4.3.6	I.32
SLC5	Intel Xeon (2.27GHz, 8cores)	48GB	lxbuild I 75	gcc/4.3.6	I.35

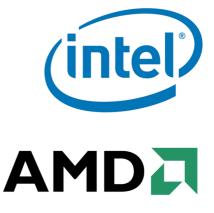

get performance difference also with Intel compiler (vI3)

but should extend tests to different platforms (Mac)

Comparison per event (l0event run)

correlation between total runtime and performance penalty?

Part II: Investigating Alternatives to Libm

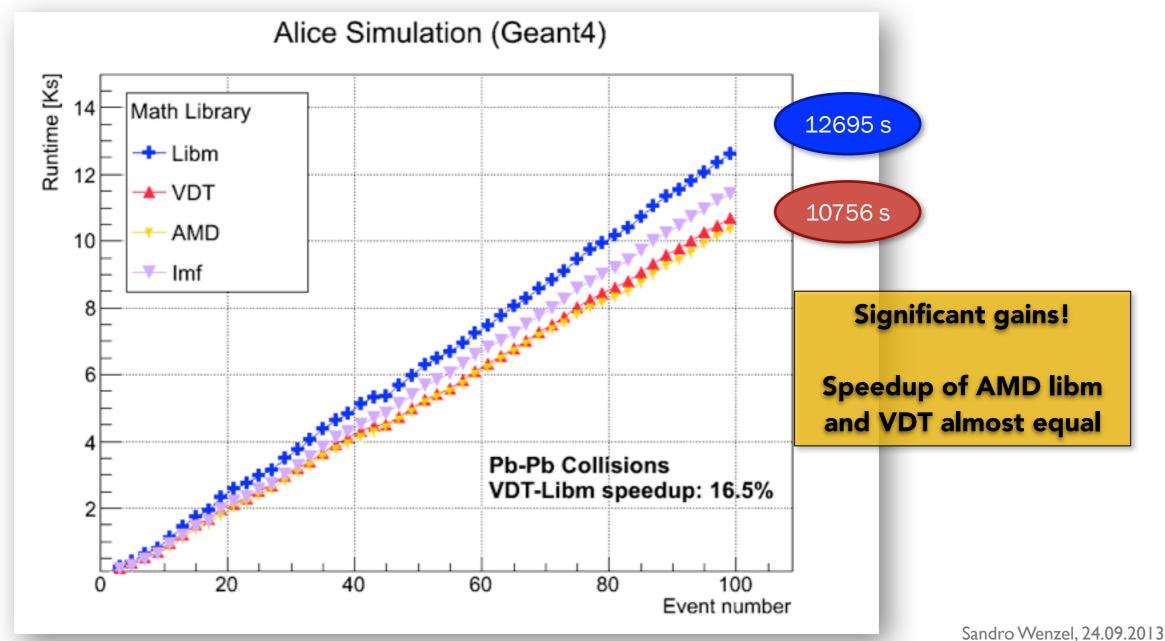

- By default, Geant4 uses GNU math library (on linux, Mac)
 - rocksolid, but not fastest implementation around

Started investigations to quantify opportunities from using faster (less precise) libraries:

- Commercial or closed source libraries
 - Intel math library
 - AMD libm
 - open source alternatives
 - **VDT** (CMS/CERN development) PIPARO, D., INNOCENTE, V. and HAUTH, Th.

svnweb.cern.ch/trac/vdt

or: github.com/drbenmorgan/vdt



Quantification of speedup-opportunity

simulate 100 events in AliRoot / Geant4.9.6.p1

*

- concentrate on Geant4 speedup: time the runloop (no digitization!)
- selection and usage of fast-math library by **LD_PRELOAD**:
 - "export LD_PRELOAD = ..libvdt.so"
 - **no recompilation** necessary but performance gain might be smaller than a compile time inclusion

Part III: Tuning Simulation Parameters

ALICE (Ivana!) started efforts to tune simulation parameters to optimize runtime

Up until now, a small step limit was imposed in low density materials (too many steps done in comparison to real geometry steps, physical steps) although geometry/physical step could be much larger

A way to control/play with this step implemented. First results (when limiting this step to 10m in low density materials) are available

New Status 09/2013

rerun measurements with new software versions (Geant4.9.6p2, new SLC6 libm, ...) with all possible combinations of tunings

time in seconds for N=50 events (Geant4 runloop)

	EnhAllocator		Std::Al	locator
cmath	7400		5680	
vdt	6500		5148	
	default step	large step limit	default step	large step limit

preliminary; validation outstanding

New Status 09/2013

rerun measurements with new software versions (Geant4.9.6p2, new SLC6 libm, ...) with all possible combinations of tunings

time in seconds for N=50 events (Geant4 runloop)

	EnhAllocator		Std::Al	locator
cmath	7400	6400	5680	4430
vdt	6500	6400	5148	4470
	default step	large step limit	default step	large step limit

change in allocator biggest improvement

- removal of step limitation important but no orthotogal with fast-math; this indicates that overall "exp" and "log" become much less important
- with step limitation, use of fast-math relevant

preliminary; validation outstanding

total gain 1.65

Backup slides

* Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

All tests use Geant4 9.6.p01 (std::alloc), compiled with gcc/4.7 on SLC6/SLC5

based on slides by D. Piparo / CERN

* Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

O given same sequence of events + random numbers, would ideally expect same number of Geant4 step lengths for all math libraries

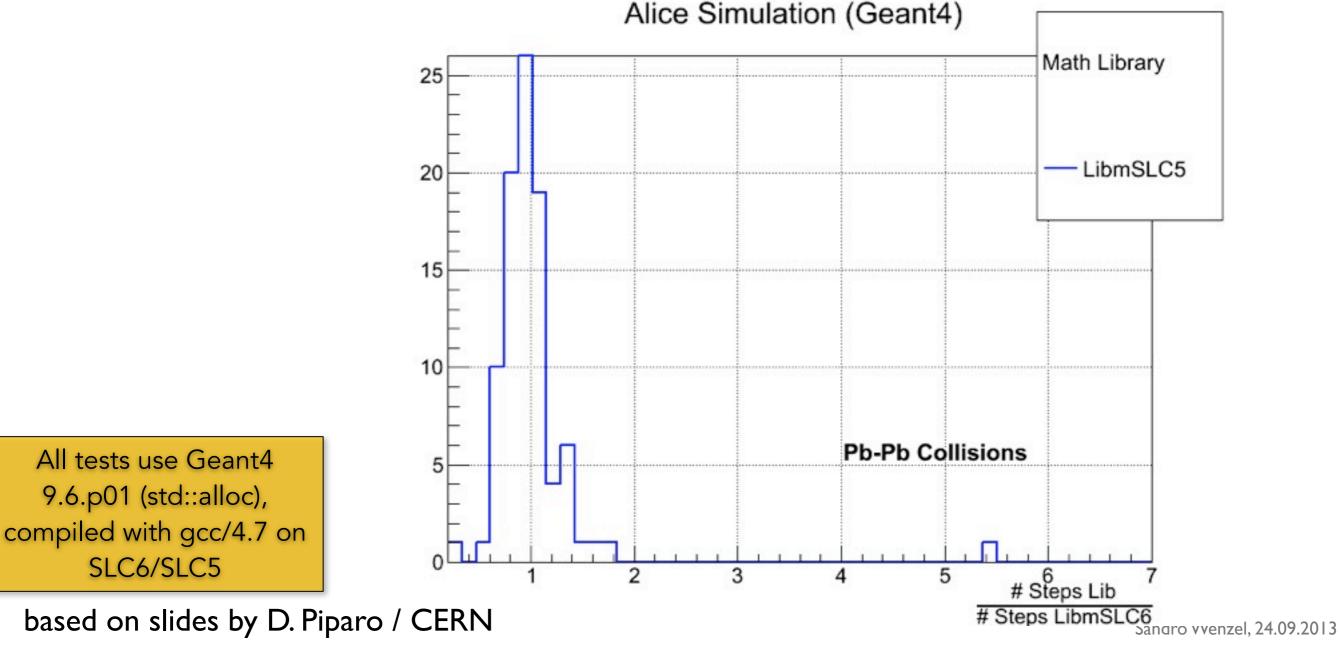
All tests use Geant4 9.6.p01 (std::alloc), compiled with gcc/4.7 on SLC6/SLC5

based on slides by D. Piparo / CERN

* Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

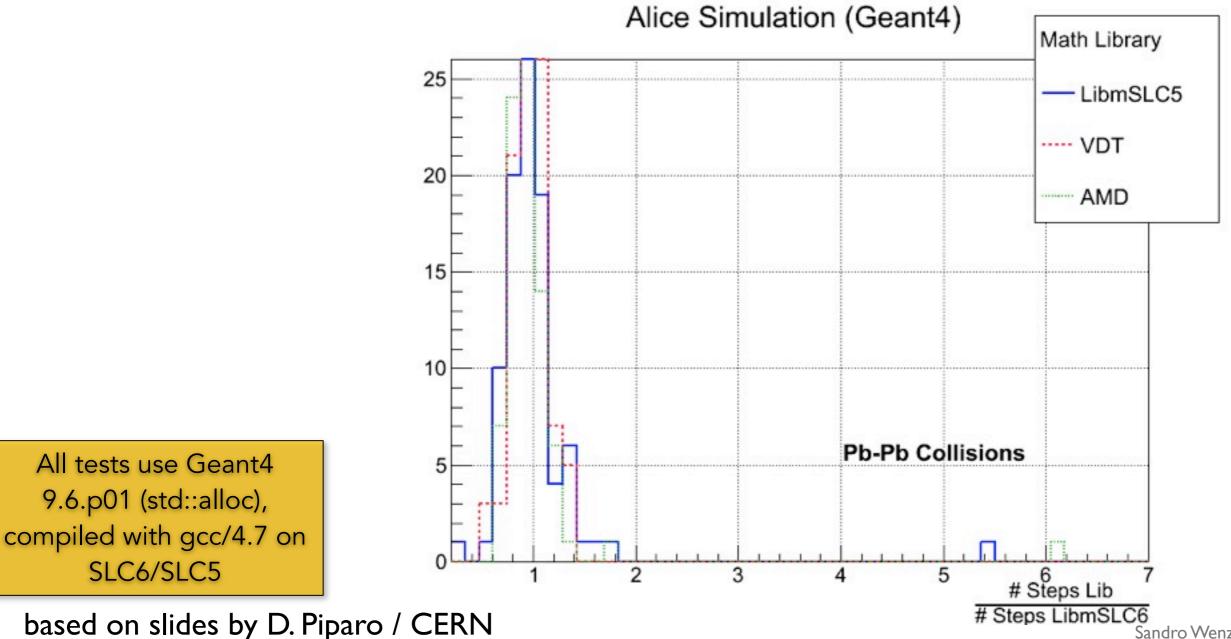
O given same sequence of events + random numbers, would ideally expect same number of Geant4 step lengths for all math libraries

• instructive to check this taking the **libm** but **different kernels** (slc5 - slc6)


All tests use Geant4 9.6.p01 (std::alloc), compiled with gcc/4.7 on SLC6/SLC5

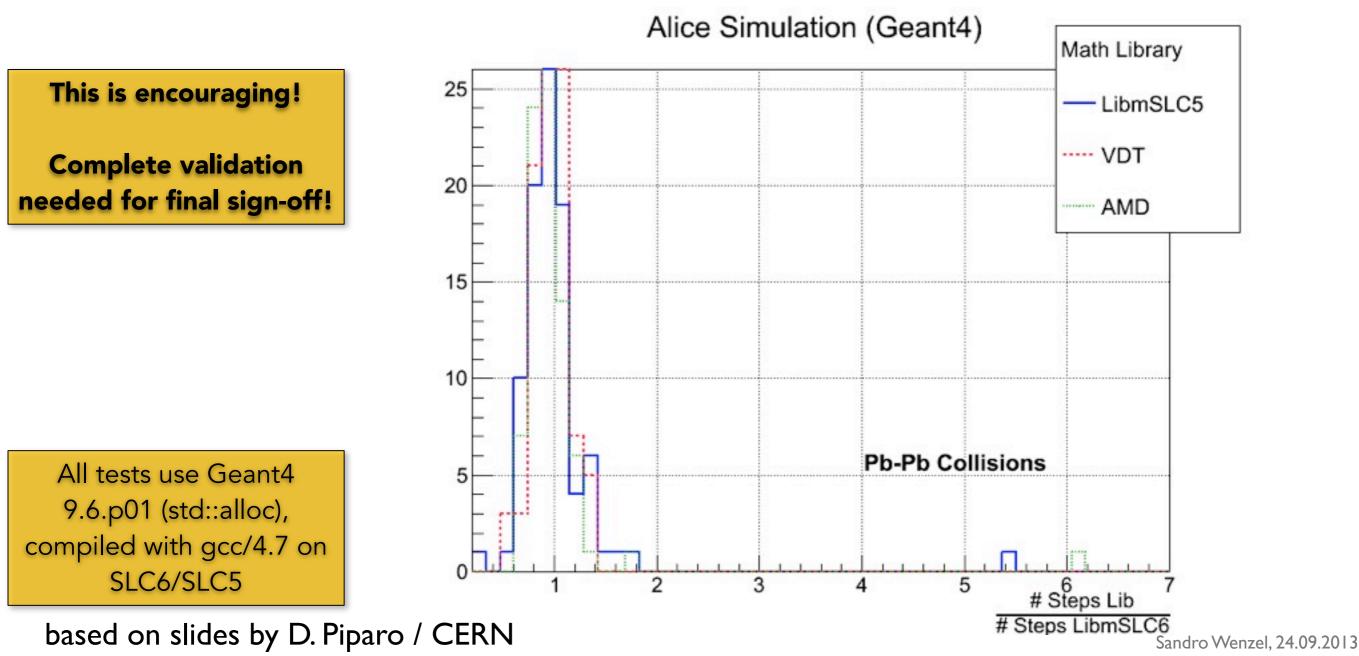
based on slides by D. Piparo / CERN

* Complete validation out of scope ... but first idea is to look at Geant4 step lengths:


O given same sequence of events + random numbers, would ideally expect same number of Geant4 step lengths for all math libraries

instructive to check this taking the **libm** but **different kernels** (slc5 - slc6) O

* Complete validation out of scope ... but first idea is to look at Geant4 step lengths:


- O given same sequence of events + random numbers, would ideally expect same number of Geant4 step lengths for all math libraries
- instructive to check this taking the **libm** but **different kernels** (slc5 slc6)
- * vdt, amd induce just same kind of variability !! (on slc6)

Sandro Wenzel, 24.09.2013

* Complete validation out of scope ... but first idea is to look at Geant4 step lengths:

- O given same sequence of events + random numbers, would ideally expect same number of Geant4 step lengths for all math libraries
- instructive to check this taking the **libm** but **different kernels** (slc5 slc6)
- * vdt, amd induce just same kind of variability !! (on slc6)

Next steps

- study memory impact of using std::allocator
- physics validation
- do next cycle of benchmarks (with improvements included)
 - get modified costs and new important code sections
 - digitization is a large part to tackle (preliminary performance increase) but more or less independent of G4