Radioactive Decay Developments

Dennis Wright
Geant4 Collaboration Workshop
24 September 2013

Outline

MT-related changes

Other changes

Coming changes

MT-related Changes (1)

- In version 9.6
 - whenever an unstable ion is created, check to see if it has a decay table
 - search by ion name string
 - if not, load instance of G4DecayTable with info from RDM database files
 - insert decay table back into the particle definition
 - modifies shared data (not allowed for MT)
 - each decay table is a collection of the possible decay channels (G4NuclearDecayChannel) for a given nuclide
 - all subsequent access of nuclide decay information is through the particle definition

MT-related Changes (2)

- Most recent tags (radioactive_decay-V09-06-13 or later)
 - decay tables now de-coupled from particle definition
 - implemented as std::map<G4int, G4DecayTable*>
 - int key is Z*10000 + A*10 + metastable level
 - search on name strings eliminated
 - two versions:
 - local: one instance per thread with its own set of decay tables
 - static: a central library of decay tables from all threads

MT-related Changes (3)

- registration of isotope table to G4IonTable moved from BuildPhysicsTable to ctor in G4RadioactiveDecay
 - under MT, ion secondaries were being lost because BuildPhysicsTable was not being called soon enough
- on-demand ion creation still supported

Non-MT Changes

- Integer metastable levels to replace energy levels
 - faster for level comparison and list indexing
 - plan to maintain both integer and energy arguments
 - consequences to user: for now in macro files use
 - gun/ionL with integer excitation levels instead of gun/ion
 - this is temporary until 10.0 comes out
- For now, default list of nuclides is created
 - particle/createAllIsomer must be added at top of macro
 - won't need to do this in 10.0 and after

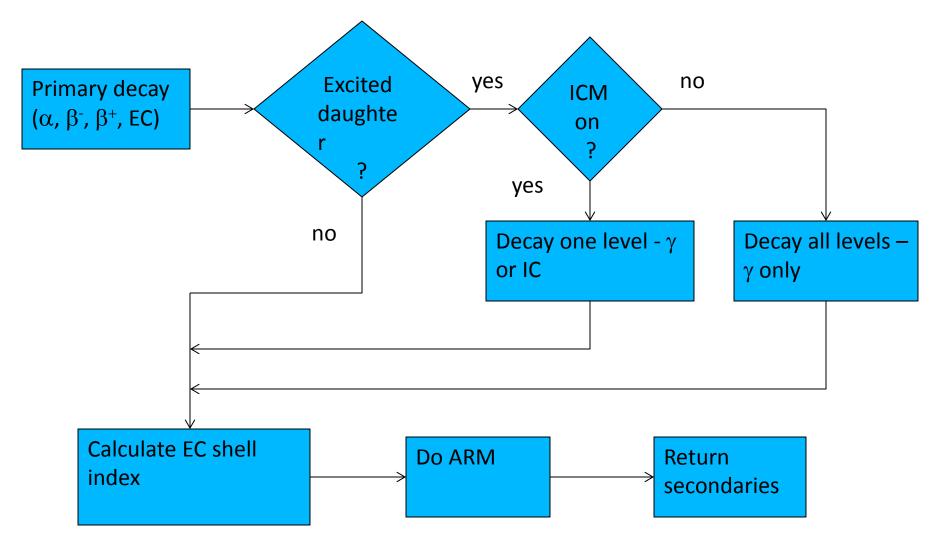
Non-MT Changes

- Set minimum lifetime to define meta-stable = 1 ns
 - ~500 more IT levels to be added to RDM database
 - these levels already exist in PhotonEvaporation database

- Databases updated by Laurent Desorgher to August 2012 (previous update 1998!)
 - RDM -> RadioactiveDecay4.0
 - Gammas -> PhotonEvaporation3.0
 - testing now underway (checking for missing files, levels)

Coming Changes - Problems

- The current G4RadioactiveDecay is a "big class" solution
 - long code, lots of methods, difficult to debug and maintain
 - performs both analogue and biased decay using if-blocks
- G4NuclearDecayChannel also a "big class" with 7 decay channels derived from it
 - K, L, M shell EC transitions treated as separate classes
- Internal conversion not done correctly
 - only one gamma may be emitted when IC turned on
 - can leave nucleus in state for which there is no data
 - done so that shell index for IC probability can be calculated


Coming Changes - Solutions

- Re-design required
 - make RDM smaller, split analogue and biased functionality into two classes
 - combine K, L, M EC transition classes into one
 - redo internal conversion to allow all eligible gamma/IC transitions to take place – leave IC on all the time
- Some good ideas for re-design in recent paper by Hauf and Kuster et al.
 - can use some of them

Backup Slides

_

Flow Chart for Past Implementation of G4NuclearDecayChannel

