Reducing Memory footprint

Strategies for MT :

A. Dotti, M. Kelsey
Parallel session /B — Hadronics issues related to MT

Overview

1 A

Dhm AN

* FEach threads own instances of Hadronic models/processes/

Cross-section

* A part of the per-thread memory overhead Is due to hadronics

e How much is It?

* Memory Profile FUllCMS application: | thread, a single 50 GeV
pi- event with FTFP_BERT

* Check memory allocations (e.g. churn)

* Concentrate on initialization routines

* Show here only methods that allocate more than |MB of memory
(e.g. concentrate on the "hot-spots”)

Overview

1 A

Dhm AN

e Measurements done on Mac OS X, numbers not so different
from Linux box

e Master thread allocates | 13.4 MB
 Worker thread: 24 MB

* Includes everything

* (Concentrate on Hadronics calls in next slides

Results (all tags updated to Monday |6t Sept)

ol Ao

LS | Y g \ ~4
351 MB wGaworkerRunManager::DoEventlLoop(int, char const*, int) libG4run.dylib ¢
3.51 MB wGaWorkerRunManager::ProcessOneEvent(int) | bCarun.dylib
3.51 MB wG4EventManager::DoProcessing(G4Event*) libCdevent.aylib
3.50 MB wGCaTrackingManager::ProcessOneTrack(G4Track®*) l|libCarracking.dylib
3.48 MB wC4aSteppingManager::Stepping(|ibCarracking.dylib
2.27 MB wG4aSteppingManager:: InvokePostStepDoltProcs() libCatracking.dylib
2.27 MB wG4aSteppingManager:: InvokePSDIP(unsigned long) |libC4atracking.dylib

G4aHadronicProcess::PostStepDolt(G4Track const&, G4Step const&) |[ibCaprd

1.02 MB wGAaSteppingManager::DefinePhysicalSteplength(}) ibCatracking. dylib
1.00 MB wC4aVDiscreteProcess: PostStepCetPhysicallnteractionLength(C4Track const&, d
1.00 MB wCG4HadronicProcess::GCetMeanFreePath(GC4Track const&, double, G4ForceCon
1.00 M wG4aCrossSectionDataStore::GCetCrossSection(G4DynamicParticle const*, G4NMh
1.00 M GCG4aCrossSectionDataStore::GetCrossSection(G namicParticle const*, G«

Processes/models during event loop: lost of relatively small
(<IMB) objects, to be studied more in detall

Hadronic cross-sections account for about 2MB in total, see
previous presentation, possibilities to reduce

Results (all tags updated to Monday |6t Sept)

n

6.82 MB Y GC4RunManagerKernel::Runinitialization() ibG4run.dylib €
6.82 MB wGC4RunManagerKernel::BuildPhysicsTables(Q |ibC4a4run.aylib

6.82 MB wGa4VUserPhysicsList::BuildPhysicsTable() |'bCarun.dylib

5.64 MB wGaVUserPhysicslList::PreparePhysicsTable(CG4ParticleDefinition™)
3.27 MB »GC4a4VEnergylossProcess: :PreparePhysicsTable(GC4ParticleDefinitic
2.34 MB - CAVEmProcess::PreparePhysicsTable(C4ParticleDefinition const¢
1.18 MB wGaVUserPhysicsList::BuildPhysicsTable{(G4ParticleDefinition*) |ib
1.18 MB wG4HadronicProcess::BuildPhysicsTable(GC4ParticleDefinition con:
1.18 MB CAa4CrossSectionDataStore::BuildPhysjcsTable(C4ParticleDefinit

Hadronic cross-sections account for about 2MB in total, see
previous presentation, possibilities to reduce

Results (all tags updated to Monday |6t Sept)

9.00 MB
9.00 MB
9.00 MB
8.79 MB
5.70 MB
5.53 MB
5.53 MB
5.53 MB
5.53 MB

vG4RunManager::Initialize() 'bCarun.dylib
vCG4RunManager::InitializePhysics() ibG4run.dylib
vCG4RunManagerKernel::InitializePhysics() |ibCdrun.aylib
vCG4VModularPhysicsList::ConstructProcess() ibC4run.dylib
vC4lonPhysics::ConstructProcess() |ibCaphysicslists.dylib
vC4BinaryLightlonReaction::G4BinaryLightlonReaction(G4VPreComp
vC4BinaryCascade::G4BinaryCascade(CG4VPreCompoundModel*) |
vC4Scatterer::G4Scatterer() !ibCdprocesses.dylib
pvoid G4ForEach<G4Pair<G4CollisionNN, G4Pair<CG4Collisionh

‘_T

Memory churn from BIC model: note this is done even if
the model is not used

Some work needed (not a trivial fix)

Measurements Conclusions

1 A

Dhm AN

* The hadronics most memory hungry (5MB) hot-spot is BIC
model (even when not used). Some rework needed

* The second Hadronics components using more memory are
cross=-sections (2.2MB) stored in G4CrossSectionDataStore

* Models/processes account for about [MB of memory

* [tis realistic to reduce memory footprint for Hadronics of a
factor 2

* Note: other models have a completely different profile

* HP models: currently each thread load all HP tables, test| | for HP
uses several GB of memory. No work on this done yet
* Requires strategy for sharing database files

Reducing memory footprint

1 A

Dhm AN

* In the following a procedure to reduce memory footprint is
shown

* The aim is to propose a step-by-step guide that can help also non-
MT experts

* Some special cases may require thinking or redesigning few spots

here and there

Reducing memory footprint

1 A

Dhm AN

* Good candidates for sharing are “'static” objects/tables
* Search in your code large arrays of numbers (cross-sections) these
are very good candidate for sharing

* Also look at large objects created at run time (e.g. a table being

calculated)
* In G4 there is a very good chance these objects are already
marked as “static”

 To make these thread-safe these have been transformed to TLS:

* Static G4Threadlocal double largeData[100] = { };
* Static G4ThreadlLocal double largeData[100] = calculateXS();

Const objects

1 A

Dhm AN

* The easiest thing to do Is to try to use the “const’” keyword. If
you can add “const’ than you can probably transform:

* Static G4ThreadlLocal double largeData[100] = {...}
* Static const double largeData[100] = {...}

* Nothing else to do

* Good practice: use const as much as you can, including in

method signatures:

* Const G4Something* GetSomething(const G4Data&) const;

10

Const objects

N

However, consider the following example (they do exist in G4):
G4Class.cc

G4Class::G4Class() { ...}

Void G4Class :: Method() {
static G4ThreadlLocal double largeData[100] = someFunc();
}

This should not be transformed simply removing G4 ThreadlLocal (long discussion, | can
provide pointers)

* Try the following;
Namespace {

static double largeData[100];

G4Mutex aMutex = GAMUTEX INITIALIZER;

}
G4Class::G4Class() {

G4AutoLock 1(&aMutex);

largeData = someFunc(); //initialize static data

}
Void G4Class::Method() {

}

11

Lazy initialized objects

e An

* None of the above work if: initialization is lazy and depends on
quantities calculated during event loop (e.g. a model cross-

section for a specific ion created only if ion Is found In

interaction)

* In such case, you probably cannot share the object (unless
you use costly locks that should be always avoided!)

* Safer solution: leave as it is, however try to remove both static and
G4 ThreadlLocal (it has a small but non zero cost every time you
use the variable): move to class data member

* |f these data are top list of memory consuming, we can work

together on that and find a different solution

12

Tradeoffs: memory vs speed

* Remember Mike's receipt, in order of preference when you see a
“static G4 ThreadlLocal™
I, Try to remove G4Threadlocal applying one of the suggested
receipt
2. If not possible and memory consumption is not large: move to class
data member (no memory reduction, but at least no penalty for

G4 Threadlocal) — do a profile yourselfl (ask Performance Task Force
how to)

3. If neither possible/desirable: leave as it is now, probably the best
solution

4. In very special cases (though | cannot think of good example):
convert to local variables

5. Inany case avoid locks and mutex, if you think that you absolutely
need them, let's discuss ...

13

