
Reducing Memory footprint	

A.  Dotti, M. Kelsey	

Parallel session 7B – Hadronics issues related to MT	

Strategies for MT	

2

Overview	

•  Each threads own instances of Hadronic models/processes/
cross-section	

•  A part of the per-thread memory overhead is due to hadronics	

•  How much is it?	

•  Memory Profile FullCMS application: 1 thread, a single 50 GeV
pi- event with FTFP_BERT	

•  Check memory allocations (e.g. churn)	

•  Concentrate on initialization routines	

•  Show here only methods that allocate more than 1MB of memory

(e.g. concentrate on the “hot-spots”)	

3

Overview	

•  Measurements done on Mac OS X, numbers not so different
from Linux box	

•  Master thread allocates 113.4 MB	

•  Worker thread: 24 MB	

•  Includes everything	

•  Concentrate on Hadronics calls in next slides	

4

Results (all tags updated to Monday 16th Sept)	

Processes/models during event loop: lost of relatively small
(<1MB) objects, to be studied more in detail	

Hadronic cross-sections account for about 2MB in total, see
previous presentation, possibilities to reduce	

5

Results (all tags updated to Monday 16th Sept)	

Hadronic cross-sections account for about 2MB in total, see
previous presentation, possibilities to reduce	

6

Results (all tags updated to Monday 16th Sept)	

Memory churn from BIC model: note this is done even if
the model is not used	

Some work needed (not a trivial fix)	

7

Measurements Conclusions	

•  The hadronics most memory hungry (5MB) hot-spot is BIC
model (even when not used). Some rework needed	

•  The second Hadronics components using more memory are
cross-sections (2.2MB) stored in G4CrossSectionDataStore	

•  Models/processes account for about 1MB of memory 	

•  It is realistic to reduce memory footprint for Hadronics of a

factor 2	

•  Note: other models have a completely different profile	

•  HP models: currently each thread load all HP tables, test11 for HP

uses several GB of memory. No work on this done yet	

•  Requires strategy for sharing database files	

	

8

Reducing memory footprint	

•  In the following a procedure to reduce memory footprint is
shown	

•  The aim is to propose a step-by-step guide that can help also non-

MT experts	

•  Some special cases may require thinking or redesigning few spots

here and there	

	

9

Reducing memory footprint	

•  Good candidates for sharing are “static” objects/tables	

•  Search in your code large arrays of numbers (cross-sections) these

are very good candidate for sharing	

•  Also look at large objects created at run time (e.g. a table being

calculated)	

•  In G4 there is a very good chance these objects are already

marked as “static”	

•  To make these thread-safe these have been transformed to TLS:	

•  Static G4ThreadLocal double largeData[100] = { …. };	

•  Static G4ThreadLocal double largeData[100] = calculateXS();	

10

Const objects	

•  The easiest thing to do is to try to use the “const” keyword. If
you can add “const” than you can probably transform:	

•  Static G4ThreadLocal double largeData[100] = {…}	

•  Static const double largeData[100] = {…}	

•  Nothing else to do	

•  Good practice: use const as much as you can, including in

method signatures:	

•  Const G4Something* GetSomething(const G4Data&) const;	

11

���
Const objects	

•  However, consider the following example (they do exist in G4):	

•  G4Class.cc	

 G4Class::G4Class()	
 {	
 ….}	

Void	
 G4Class	
 ::	
 Method()	
 {	

	
 static	
 G4ThreadLocal	
 double	
 largeData[100]	
 =	
 someFunc();	

}	

•  This should not be transformed simply removing G4ThreadLocal (long discussion, I can

provide pointers)	

•  Try the following:	

Namespace	
 {	
 	

	
 static	
 double	
 largeData[100];	

	
 	
 	
 	
 	
 	
 	
 	
 	
 G4Mutex	
 aMutex	
 =	
 G4MUTEX_INITIALIZER;	

}	

G4Class::G4Class()	
 {	
 	

	
 	
 	
 	
 G4AutoLock	
 l(&aMutex);	

	
 largeData	
 =	
 someFunc();	
 //initialize	
 static	
 data	

}	

Void	
 G4Class::Method()	
 {	

}	

12

Lazy initialized objects	

•  None of the above work if: initialization is lazy and depends on
quantities calculated during event loop (e.g. a model cross-
section for a specific ion created only if ion is found in
interaction)	

•  In such case, you probably cannot share the object (unless
you use costly locks that should be always avoided!)	

•  Safer solution: leave as it is, however try to remove both static and

G4ThreadLocal (it has a small but non zero cost every time you
use the variable): move to class data member	

•  If these data are top list of memory consuming, we can work
together on that and find a different solution	

13

Tradeoffs: memory vs speed	

•  Remember Mike’s receipt, in order of preference when you see a
“static G4ThreadLocal”:	

1.  Try to remove G4ThreadLocal applying one of the suggested
receipt	

2.  If not possible and memory consumption is not large: move to class
data member (no memory reduction, but at least no penalty for
G4ThreadLocal) – do a profile yourself! (ask Performance Task Force
how to)	

3.  If neither possible/desirable: leave as it is now, probably the best
solution	

4.  In very special cases (though I cannot think of good example):
convert to local variables	

5.  In any case avoid locks and mutex, if you think that you absolutely
need them, let’s discuss …	

