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Motivations for  
a common solids library 

• Optimize and guarantee better long-term 

maintenance of ROOT and Gean4 solids libraries 
o A rough estimation indicates that about 70-80% of code investment for 

the geometry modeler concerns solids, to guarantee the required 

precision and efficiency in a huge variety of combinations 

• Create a single high quality library to replace solid 

libraries in Geant4 and ROOT 
o Starting from what exists today in Geant4 and ROOT 

o Adopt a single type for each shape 

o Significantly optimize (Multi-Union, Tessellated Solid, Polyhedra, Polycone) 

o Reach complete conformance to GDML solids schema 

• Create extensive testing suite 
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Solids implemented so far 
• Box 

• Orb 

• Trapezoid 
• Sphere (+ sphere section) 

• Tube (+ cylindrical section)  

• Cone (+ conical section)  

• Generic trapezoid 

• Tetrahedron 
• Arbitrary Trapezoid (ongoing) 

• Multi-Union 

• Tessellated Solid 

• Polycone 

• Polyhedra 
• Extruded solid (ongoing) 

Current status of the development of the Unified Solids library 

0

500

1000

0

500

1000

200

400

600

800

1000

-10

-5

0

5x 10
4 -5

0

5

x 10
4

-6

-4

-2

0

2

4

6

x 10
4

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

-1000

0

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

3 



Testing Suite 
• Unified Solid Batch Test 

• Optical Escape 

• Specialized tests (e.g. quick performance 

scalability test for multi-union) 
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Unified Solid Batch Test 
• New powerful diagnosis tool for testing solids of ROOT, Geant4 

and Unified Solids library designed for transition to Unified Solids  

• Compares performance and output values from different 
codes 

• Helps us to make sure we have similar or better performance in 

each method and different test cases 

• Support for batch configuration and execution of tests 

• Useful to detect, report and fix numerous bugs or suspect return 

values in Geant4, ROOT and Unified Solids 

• Two phases 

o Sampling phase (generation of data sets, implemented in C++ 

o Analysis phase (data post-processing, implemented as MATLAB 

scripts) 
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Visualization of scalar and 
vector data sets  
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3D plots allowing to 
overview data sets 
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3D visualization of 
investigated shapes 
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Support for regions of data, 
focusing on sub-parts 
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Visual analysis of 
differences 
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Visual analysis of 
differences in 3D 
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Graphs with comparison of 
performance 
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Visualization of scalability 

performance for specific solids 
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New Multi-Union solid 
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Multi-Union solid 
• We implemented a new 

solid as a union of many 

solids using voxelization 

technique to optimize 

speed and scalability 
o 3D space partition for fast 

localization of components 

o Aiming for a log(n) scalability, unlike 

the Geant4 Boolean solid 

• Useful for complex 

composites made of 

many solids 
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Test multi-union solid for 
scalability measurements 
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Union of random boxes, orbs 
and trapezoids (on pictures 
with 5, 10, 20 solids) 
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The most performance 
critical methods 
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Fast Tessellated Solid 
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Fast Tessellated Solid 
• Made from connected 

triangular and quadrangular 
facets forming solid 

• Old implementation was slow, 
no spatial optimization 

• We use spatial division of facets 
into 3D grid forming voxels 

• Voxelization is based on: 
o Bitmasks and logical and 

operations during initialization 

o NEW: Bitmasks are not used at 
runtime, only pre-calculated lists of 
facets candidates are used during 
runtime 

• Speedup factor ~10x additional 
improvement since the previous 
Geant4 collaboration meeting 
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Fast Tessellated Solid 
• Old Tessellated Solid had also several weak parts of 

algorithm, used at initialization with n2 complexity 
o This sometimes caused very huge delays when loading (e.g. in case of foil 

with 164k faces) 

o Rewrote to have n ∙ log n complexity 

o Loading the solid is much faster. What before took minutes, now takes 

seconds 

• Backported in autumn 2012 also to Geant4 9.6 

• By improving design of classes and removing 

inefficiencies, total memory save is about ~50%,  
o Voxelization has overhead vs. original G4TS, which reduces to a total memory save 

of  ~25% 
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LHCb VELO foil benchmark 
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Method Speedup 

Inside 2423x 

DistanceToIn 1334x 

DistanceToOut 1976x 

Information Value 

Number of facets 164.149 

Number of voxels 158.928 

Memory saved 
compared with 
original Geant4 

22% 
(51MB) 
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G4TessellatedSolid

New G4TessellatedSolid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• OLD Speedup: 240x               None            10000x+                    None               133x               397x 

• NEW Speedup: 894x               10.3x            10000x+                    ~8.7x               412x              1183x 

• NEW Speedup: 2423x             72x               10000x+                    ~10.9x             1334x            1976x 

• NEW Speedup: 2925x             46x               10000x+                    ~9.8x               1332x            2968x 

 

 

 

Performance – 164k/SCL5 
with 10k/100k/1M voxels 
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Polycone 
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New Ordinary Polycone 
implementation 

• Polycone is an important solid, heavily used in most 
experimental setups 

• Special optimization for common cases: Z sections 
can only increase (big majority of real cases) 
o Based on composition of separate instances of cones, tubes (or their 

sections) 

o This way, providing brief, readable, clean and fast code 

o Excellent scalability over the number of Z sections 

o Very significant performance improvement 

• Will make visible CPU improvement in full simulation of 
complex setups like ATLAS and CMS  
o In CMS, 6.92% was measured as the total CPU share of Polycone methods 

o Assuming possible speedup factor ~5x, this would save around 5% total 
time of the whole CMS experiment 

o Cost of polycone in ATLAS is “around 10%” 
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Ordinary Polycone 
performance, 3 z sections  

• Speedup factor 3.3x vs. Geant4, 7.6x vs. ROOT for 

most performance critical methods, i.e.:  

Inside, DistanceToOut, DistanceToIn 
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Ordinary Polycone 
performance, 10 z sections  
• Speedup factor 8.3x vs. Geant4, 7.9x vs. ROOT for 

most performance critical methods  
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Ordinary Polycone 
performance, 100 z sections  

• Speedup factor 34.3x vs. Geant4, 10.7x vs. ROOT  

for most performance critical methods  
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Ordinary Polycone scalability 
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Geant4 poor performance scalability is explained  by the lack of spatial optimization 



Ordinary Polycone: sometimes only proper, 

careful coding makes big difference 

• Performance gain over Geant4 could be explained 

due to lack of spatial division by voxelization 

• But new USolids polycone uses very similar 

algorithms and voxelization as ROOT does: why it is 

factor 7 – 10x faster, much more clear, shorter, 

readable and easier to maintain? 

• Answer is given in 2 backup slides in the end of 

presentation 
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Generic Polycone 
• Optimization made as well 

o Using voxelization on generalized surface facet 
model 

o Performance improvement over Geant4 
(generic polycone does not exist in ROOT) 

o Performance improvement depends on the 
number of sections and is less than in case of 
ordinary polycone 

o Scalability is excellent as well as for the ordinary 
polycone case 

o Tested and measured on original Geant4 test 
cases of solids 

o Values are 100% conformal with Geant4 

• This work was achieved thanks to 
the 3 month extension negotiated 
by John Harvey and supported by 
the Linear Collider Detector Team 
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Geant4 Polycone

New Generic Polycone

New Ordinary Polycone
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Geant4 Polycone

New Generic Polycone

New Ordinary Polycone
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Geant4 Polycone

New Generic Polycone

New Ordinary Polycone

Ordinary vs. Generic  
Polycone 
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Geant4 Polycone

New Generic Polycone

New Ordinary Polycone

Geant4 poor performance scalability is 
explained  by the lack of spatial optimization 



Polyhedra 
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New Polyhedra 
implementation 

• Uses similar methodology as was done for the 

Generic Polycone 

• Works for both ordinary and generic polyhedra 

• Provides improvement of performance and 

scalability  

• Values are 100% conformal with Geant4 

• Same as for the case of generic polycone, this work was 

made during my last 3 months contract extension 
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Inside scalability 
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DistanceToIn scalability 

Current status of the development of the Unified Solids library 

2 4 6 8 10 20 50
0

2000

4000

6000

8000

10000

12000

14000

16000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r 

o
p
e
ra

ti
o
n
]

Performance of method DistanceToIn at folder log

 

 

Geant4

ROOT

USolid

35 

Geant4 poor performance scalability is explained  by the lack of spatial optimization 



DistanceToOut scalability 
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Normal scalability 
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SafetyFromInside 
scalability 
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SafetyFromOutside 
scalability 
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Status of work  
 Types and Unified Solids interface are defined 

 Bridge classes for comparison with Geant4 and 

ROOT implemented 

 Testing suite defined and deployed 

 Implemented 9 solid primitives 

 New, high performance implementation of 

composed solids: Multi-Union, Tessellated solid, 

Polycone, Polyhedra and Extruded-Solid (ongoing) 

 Code and knowledge is being passed since Q1 

2013 to Tatiana Nikitina 
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Future work plan 
• Marek Gayer 

o Finish documentation 

• Tatiana Nikitina 
o Analyze and implement remaining solids for the new library 

o Verify implementation of secondary methods for all solids 

o Integration to Geant4 10 
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Thank you for your attention. 

? ? 
Questions and Answers 
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Backup 
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Polycone: sometimes only proper, careful 

coding makes huge difference 1/2 
• But new USolids polycone uses very similar algorithms 

and voxelization as ROOT does: why it is factor 7 – 10x 
faster, much more clear, shorter, readable and easier to 
maintain? 

• Pre-calculates as much as possible in the constructor 
and not during runtime, not needing to do it in 
navigation methods again (e.g. if it is cylindrical or 
tubular section) 

• Using directly methods from Tubs on Cons for polycone 
section to separate and move the logic from Polycone 
to Polycone sections  
o not re-implementing it again in new methods => difficult to read, maintain 

• Lot of polycone data is instead contained in Tubs and 
Cons 
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Polycone: sometimes only proper, careful 

coding makes huge difference 2/2 
• No use of recursion, troubling compiler, processor and 

code readability 

• DistanceToIn moves point to bounding box 

• std::lower_bound is much faster than doing binary 
search by own coding 

• C++, not feeling of mere C wrapped in classes 

• Using class for vector (x,y,z) is better than using C array 

• No use of pointers, memcpy, memset, … 

• Section data not contained in Tubs, Cons are grouped 
together in a std::vector of struct’s 

• Logical components, namely repeatedly used are in 
separated methods, often inlined 
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