
Current status of the development of
the Unified Solids library

Marek Gayer

CERN PH/SFT

Motivations for
a common solids library

• Optimize and guarantee better long-term

maintenance of ROOT and Gean4 solids libraries
o A rough estimation indicates that about 70-80% of code investment for

the geometry modeler concerns solids, to guarantee the required

precision and efficiency in a huge variety of combinations

• Create a single high quality library to replace solid

libraries in Geant4 and ROOT
o Starting from what exists today in Geant4 and ROOT

o Adopt a single type for each shape

o Significantly optimize (Multi-Union, Tessellated Solid, Polyhedra, Polycone)

o Reach complete conformance to GDML solids schema

• Create extensive testing suite

Current status of the development of the Unified Solids library 2

Solids implemented so far
• Box

• Orb

• Trapezoid
• Sphere (+ sphere section)

• Tube (+ cylindrical section)

• Cone (+ conical section)

• Generic trapezoid

• Tetrahedron
• Arbitrary Trapezoid (ongoing)

• Multi-Union

• Tessellated Solid

• Polycone

• Polyhedra
• Extruded solid (ongoing)

Current status of the development of the Unified Solids library

0

500

1000

0

500

1000

200

400

600

800

1000

-10

-5

0

5x 10
4 -5

0

5

x 10
4

-6

-4

-2

0

2

4

6

x 10
4

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

-1000

0

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

-1000

-500

0

500

1000

3

Testing Suite
• Unified Solid Batch Test

• Optical Escape

• Specialized tests (e.g. quick performance

scalability test for multi-union)

Current status of the development of the Unified Solids library 4

Unified Solid Batch Test
• New powerful diagnosis tool for testing solids of ROOT, Geant4

and Unified Solids library designed for transition to Unified Solids

• Compares performance and output values from different
codes

• Helps us to make sure we have similar or better performance in

each method and different test cases

• Support for batch configuration and execution of tests

• Useful to detect, report and fix numerous bugs or suspect return

values in Geant4, ROOT and Unified Solids

• Two phases

o Sampling phase (generation of data sets, implemented in C++

o Analysis phase (data post-processing, implemented as MATLAB

scripts)

Current status of the development of the Unified Solids library 5

Visualization of scalar and
vector data sets

Current status of the development of the Unified Solids library 6

3D plots allowing to
overview data sets

Current status of the development of the Unified Solids library 7

3D visualization of
investigated shapes

Current status of the development of the Unified Solids library

-5000

0

5000

0

5000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

8

Support for regions of data,
focusing on sub-parts

Current status of the development of the Unified Solids library 9

Visual analysis of
differences

Current status of the development of the Unified Solids library 10

Visual analysis of
differences in 3D

Current status of the development of the Unified Solids library 11

Inside DistanceToOut DistanceToIn Normal SafetyFromOutside SafetyFromInside
0

20

40

60

80

100

120

140

Method

T
im

e
 p

e
r

o
n
e
 m

e
th

o
d
 c

a
ll

[n
a
n
o
s
e
c
o
n
d
s
]

Performance of methods at folder trap-1m-performance

Geant4

ROOT

USolids

Graphs with comparison of
performance

Current status of the development of the Unified Solids library 12

Visualization of scalability

performance for specific solids

Current status of the development of the Unified Solids library

2 4 6 8 10 20 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method DistanceToOut at folder log

Geant4

ROOT

USolid

13

New Multi-Union solid

Current status of the development of the Unified Solids library 14

Multi-Union solid
• We implemented a new

solid as a union of many

solids using voxelization

technique to optimize

speed and scalability
o 3D space partition for fast

localization of components

o Aiming for a log(n) scalability, unlike

the Geant4 Boolean solid

• Useful for complex

composites made of

many solids

Current status of the development of the Unified Solids library -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

15

Test multi-union solid for
scalability measurements

Current status of the development of the Unified Solids library

Union of random boxes, orbs
and trapezoids (on pictures
with 5, 10, 20 solids)

16

The most performance
critical methods

Current status of the development of the Unified Solids library 17

Fast Tessellated Solid

Current status of the development of the Unified Solids library 18

Fast Tessellated Solid
• Made from connected

triangular and quadrangular
facets forming solid

• Old implementation was slow,
no spatial optimization

• We use spatial division of facets
into 3D grid forming voxels

• Voxelization is based on:
o Bitmasks and logical and

operations during initialization

o NEW: Bitmasks are not used at
runtime, only pre-calculated lists of
facets candidates are used during
runtime

• Speedup factor ~10x additional
improvement since the previous
Geant4 collaboration meeting

Current status of the development of the Unified Solids library 19

Fast Tessellated Solid
• Old Tessellated Solid had also several weak parts of

algorithm, used at initialization with n2 complexity
o This sometimes caused very huge delays when loading (e.g. in case of foil

with 164k faces)

o Rewrote to have n ∙ log n complexity

o Loading the solid is much faster. What before took minutes, now takes

seconds

• Backported in autumn 2012 also to Geant4 9.6

• By improving design of classes and removing

inefficiencies, total memory save is about ~50%,
o Voxelization has overhead vs. original G4TS, which reduces to a total memory save

of ~25%

Current status of the development of the Unified Solids library 20

LHCb VELO foil benchmark

Current status of the development of the Unified Solids library

Method Speedup

Inside 2423x

DistanceToIn 1334x

DistanceToOut 1976x

Information Value

Number of facets 164.149

Number of voxels 158.928

Memory saved
compared with
original Geant4

22%
(51MB)

21

Inside Normal SafetyFromOutside SafetyFromInside DistanceToIn DistanceToOut
0

5

10

15
x 10

6

Method

T
im

e
 p

e
r

o
n
e
 m

e
th

o
d
 c

a
ll

[n
a
n
o
s
e
c
o
n
d
s
]

Performance of methods at folder tessellatedsolid-test-t100-100k

G4TessellatedSolid

New G4TessellatedSolid

• OLD Speedup: 240x None 10000x+ None 133x 397x

• NEW Speedup: 894x 10.3x 10000x+ ~8.7x 412x 1183x

• NEW Speedup: 2423x 72x 10000x+ ~10.9x 1334x 1976x

• NEW Speedup: 2925x 46x 10000x+ ~9.8x 1332x 2968x

Performance – 164k/SCL5
with 10k/100k/1M voxels

Current status of the development of the Unified Solids library 22

Polycone

Current status of the development of the Unified Solids library 23

New Ordinary Polycone
implementation

• Polycone is an important solid, heavily used in most
experimental setups

• Special optimization for common cases: Z sections
can only increase (big majority of real cases)
o Based on composition of separate instances of cones, tubes (or their

sections)

o This way, providing brief, readable, clean and fast code

o Excellent scalability over the number of Z sections

o Very significant performance improvement

• Will make visible CPU improvement in full simulation of
complex setups like ATLAS and CMS
o In CMS, 6.92% was measured as the total CPU share of Polycone methods

o Assuming possible speedup factor ~5x, this would save around 5% total
time of the whole CMS experiment

o Cost of polycone in ATLAS is “around 10%”

Current status of the development of the Unified Solids library
-500005000-500005000

2

4

6

8

10

12

x 10
4

24

Inside DistanceToOut DistanceToIn Normal SafetyFromOutside SafetyFromInside
0

500

1000

1500

2000

2500

Method

T
im

e
 p

e
r

o
n
e
 m

e
th

o
d
 c

a
ll

[n
a
n
o
s
e
c
o
n
d
s
]

Performance of methods at folder polycone-3s-360-perf

Geant4

ROOT

USolids

Ordinary Polycone
performance, 3 z sections

• Speedup factor 3.3x vs. Geant4, 7.6x vs. ROOT for

most performance critical methods, i.e.:

Inside, DistanceToOut, DistanceToIn

Current status of the development of the Unified Solids library 25

Ordinary Polycone
performance, 10 z sections
• Speedup factor 8.3x vs. Geant4, 7.9x vs. ROOT for

most performance critical methods

Current status of the development of the Unified Solids library 26

Inside DistanceToOut DistanceToIn Normal SafetyFromOutsideSafetyFromInside
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Method

T
im

e
 p

e
r

o
n
e
 m

e
th

o
d
 c

a
ll

[n
a
n
o
s
e
c
o
n
d
s
]

Performance of methods at folder polycone-10s-360-perf

Geant4

ROOT

USolids

Ordinary Polycone
performance, 100 z sections

• Speedup factor 34.3x vs. Geant4, 10.7x vs. ROOT

for most performance critical methods

Current status of the development of the Unified Solids library 27

Inside DistanceToOut DistanceToIn Normal SafetyFromOutsideSafetyFromInside
0

1000

2000

3000

4000

5000

6000

7000

Method

T
im

e
 p

e
r

o
n
e
 m

e
th

o
d
 c

a
ll

[n
a
n
o
s
e
c
o
n
d
s
]

Performance of methods at folder polycone-100s-360-perf

Geant4

ROOT

USolids

3s 10s 100s
0

1000

2000

3000

4000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method SafetyFromInside at folder ordinary

Geant4

ROOT

USolid

3s 10s 100s
0

2000

4000

6000

8000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method DistanceToOut at folder ordinary

Geant4

ROOT

USolid

3s 10s 100s
0

500

1000

1500

2000

2500

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method Inside at folder ordinary

Geant4

ROOT

USolid

Ordinary Polycone scalability

Current status of the development of the Unified Solids library 28

-500005000-500005000

2

4

6

8

10

12

x 10
4

3s 10s 100s
0

1000

2000

3000

4000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
] Performance of method DistanceToIn at folder ordinary

Geant4

ROOT

USolid

Geant4 poor performance scalability is explained by the lack of spatial optimization

Ordinary Polycone: sometimes only proper,

careful coding makes big difference

• Performance gain over Geant4 could be explained

due to lack of spatial division by voxelization

• But new USolids polycone uses very similar

algorithms and voxelization as ROOT does: why it is

factor 7 – 10x faster, much more clear, shorter,

readable and easier to maintain?

• Answer is given in 2 backup slides in the end of

presentation

Current status of the development of the Unified Solids library 29

Generic Polycone
• Optimization made as well

o Using voxelization on generalized surface facet
model

o Performance improvement over Geant4
(generic polycone does not exist in ROOT)

o Performance improvement depends on the
number of sections and is less than in case of
ordinary polycone

o Scalability is excellent as well as for the ordinary
polycone case

o Tested and measured on original Geant4 test
cases of solids

o Values are 100% conformal with Geant4

• This work was achieved thanks to
the 3 month extension negotiated
by John Harvey and supported by
the Linear Collider Detector Team

Current status of the development of the Unified Solids library 30

3s 10s 100s
0

1000

2000

3000

4000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method SafetyFromInside at folder combined

Geant4 Polycone

New Generic Polycone

New Ordinary Polycone

3s 10s 100s
0

2000

4000

6000

8000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method DistanceToOut at folder combined

Geant4 Polycone

New Generic Polycone

New Ordinary Polycone

3s 10s 100s
0

1000

2000

3000

4000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
] Performance of method DistanceToIn at folder combined

Geant4 Polycone

New Generic Polycone

New Ordinary Polycone

Ordinary vs. Generic
Polycone

Current status of the development of the Unified Solids library 31

-500005000-500005000

2

4

6

8

10

12

x 10
4

3s 10s 100s
0

500

1000

1500

2000

2500

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
] Performance of method Inside at folder combined

Geant4 Polycone

New Generic Polycone

New Ordinary Polycone

Geant4 poor performance scalability is
explained by the lack of spatial optimization

Polyhedra

Current status of the development of the Unified Solids library 32

New Polyhedra
implementation

• Uses similar methodology as was done for the

Generic Polycone

• Works for both ordinary and generic polyhedra

• Provides improvement of performance and

scalability

• Values are 100% conformal with Geant4

• Same as for the case of generic polycone, this work was

made during my last 3 months contract extension

Current status of the development of the Unified Solids library 33

Inside scalability

Current status of the development of the Unified Solids library

2 4 6 8 10 20 50
0

500

1000

1500

2000

2500

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method Inside at folder log

Geant4

ROOT

USolid

34

Geant4 poor performance scalability is explained by the lack of spatial optimization

DistanceToIn scalability

Current status of the development of the Unified Solids library

2 4 6 8 10 20 50
0

2000

4000

6000

8000

10000

12000

14000

16000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method DistanceToIn at folder log

Geant4

ROOT

USolid

35

Geant4 poor performance scalability is explained by the lack of spatial optimization

DistanceToOut scalability

Current status of the development of the Unified Solids library

2 4 6 8 10 20 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method DistanceToOut at folder log

Geant4

ROOT

USolid

36

Geant4 poor performance scalability is explained by the lack of spatial optimization

Normal scalability

Current status of the development of the Unified Solids library

2 4 6 8 10 20 50
0

1000

2000

3000

4000

5000

6000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method Normal at folder log

Geant4

ROOT

USolid

37

Geant4 poor performance scalability is explained by the lack of spatial optimization

SafetyFromInside
scalability

Current status of the development of the Unified Solids library

2 4 6 8 10 20 50
0

1000

2000

3000

4000

5000

6000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method SafetyFromInside at folder log

Geant4

ROOT

USolid

38

Geant4 poor performance scalability is explained by the lack of spatial optimization

2 4 6 8 10 20 50
0

1000

2000

3000

4000

5000

6000

7000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method SafetyFromOutside at folder log

Geant4

ROOT

USolid

SafetyFromOutside
scalability

Current status of the development of the Unified Solids library 39

Geant4 poor performance scalability is explained by the lack of spatial optimization

Status of work
 Types and Unified Solids interface are defined

 Bridge classes for comparison with Geant4 and

ROOT implemented

 Testing suite defined and deployed

 Implemented 9 solid primitives

 New, high performance implementation of

composed solids: Multi-Union, Tessellated solid,

Polycone, Polyhedra and Extruded-Solid (ongoing)

 Code and knowledge is being passed since Q1

2013 to Tatiana Nikitina

Current status of the development of the Unified Solids library 40

Future work plan
• Marek Gayer

o Finish documentation

• Tatiana Nikitina
o Analyze and implement remaining solids for the new library

o Verify implementation of secondary methods for all solids

o Integration to Geant4 10

Current status of the development of the Unified Solids library 41

Thank you for your attention.

? ?
Questions and Answers

Current status of the development of the Unified Solids library 42

Backup

Current status of the development of the Unified Solids library 43

Polycone: sometimes only proper, careful

coding makes huge difference 1/2
• But new USolids polycone uses very similar algorithms

and voxelization as ROOT does: why it is factor 7 – 10x
faster, much more clear, shorter, readable and easier to
maintain?

• Pre-calculates as much as possible in the constructor
and not during runtime, not needing to do it in
navigation methods again (e.g. if it is cylindrical or
tubular section)

• Using directly methods from Tubs on Cons for polycone
section to separate and move the logic from Polycone
to Polycone sections
o not re-implementing it again in new methods => difficult to read, maintain

• Lot of polycone data is instead contained in Tubs and
Cons

Current status of the development of the Unified Solids library 44

Polycone: sometimes only proper, careful

coding makes huge difference 2/2
• No use of recursion, troubling compiler, processor and

code readability

• DistanceToIn moves point to bounding box

• std::lower_bound is much faster than doing binary
search by own coding

• C++, not feeling of mere C wrapped in classes

• Using class for vector (x,y,z) is better than using C array

• No use of pointers, memcpy, memset, …

• Section data not contained in Tubs, Cons are grouped
together in a std::vector of struct’s

• Logical components, namely repeatedly used are in
separated methods, often inlined

Current status of the development of the Unified Solids library 45

