
Hadronics Framework and
MT	

A.  Dotti, M. Kelsey	

Parallel session 7B - Hadronics issues related to MT	

2

Review of MT workflow	

•  Basic design: only most memory
consumption objects are shared	

•  Geometry, EM tables	

•  There is a special “thread” (not a real
thread, the main function): the master. It
owns fully initialized G4 (physics,
geometry), done in sequential mode, but
does not process events during the event
loop	

	

	

3

Our goal	

•  Up to now Hadronics is thread-private:	

•  Each worker owns instances of hadronics model/physics	

•  Processes do not share anything	

•  To further reduce memory usage we can share parts of
hadronics	

•  Use master thread to get data to-be-shared	

•  Similarly to what is done in EM	

1.  The master thread is configured before workers	

2.  Workers EM processes get the pointer of the “pre-initialized”

data to be shared	

4

Kernel	

•  Kernel cannot have knowledge of hadronics framework	

•  Kernel has single shared instance of G4VUserPhysicsList, during

run initialization:	

1.  It loops on all particles and calls:

G4VserPhsyicsList::PreaprePhysicsTable(
 G4Particl
eDefinition*)	
 ::BuildBhysicsTable(G4ParticleDefin
ition*)	

2.  These will loop on all processes attached to the particles and call:	

•  G4VProcess::{Prepare,Build}PhysicsTable(
 const	

G4ParticleDefinition&)	
 for sequential and master thread	

•  G4VProcess::{Prepare,Build}

WorkerPhysicsTable(
 const	
 G4ParticleDefinition&) for
workers	

5

Extended G4VProcess interface	

•  virtual	
 void	
 BuildWorkerPhysicsTable(const	

G4ParticleDefinition&	
 part)	
 {	
 BuilPhysicsTable(part);	
 }	

•  	
 virtual	
 void	
 PrepareWorkerPhysicsTable(const	

G4ParticleDefinition&)	
 {	
 PreparePhysicsTable(part);	
 }	

•  The two methods provide default behavior (fully backward

compatible)	

•  Additional method:	

•  const	
 G4VProcess*	
 GetMasterProcess()	
 const;	

•  Can be used to get to-be-shared parts of process	

6

Hadronic framework	

•  Two separate entities that can have a MT awareness:	

•  Cross-sections	

•  Hadronic Models	

•  Since the two are separate need to address both independently	

•  G4HadronicProcess is generic container, should be

modified minimally	

7

CrossSection : general considerations 	

•  Base class of hadronics framework, inherits from G4VProcess	

•  G4HadronicProcess::PreparePhysicsTable(
 part	
)	

registers process for particle in TLS G4HadronicProcessStore,
nothing to do with XS	

•  G4HadronicProcess::BuildPhysicsTable(
 part	
)	
 	

•  Forward calls to G4CrossSectionDataStore::BuildPhysicsTable	

•  That loops on all XS to call equivalent method	

•  Do we need to implement a BuildWorkerPhysicsTable in
cross-section classes?	

•  No if we use factory when we want to share	

8

Factory mechanism 	

•  Two assumptions:	

1.  Cross-section is implemented with factory mechanism	

2.  The entire cross-section object can be shared

among threads	

•  if (1&&2) use factory macros:	

•  G4_DECLARE_XS_FACTORY Factory creates cross-
section for each thread	

•  G4_DECLARE_SHAREDXS_FACTORY Factory creates
a singleton (shared) cross-section	

•  To be tested, will need some further tuning 	

•  If this does not cover all cases, we need to implement new

WorkerBuildPhysicsTable mechanism 	

9

Models	

•  G4HadronicProcess inherits from G4VProcess	

•  Models are not owned directly by processes, but

registered in the G4EnergyRangeManager (one for each
G4HadronicProcess)	

•  Models can be shared among processes	

•  For models G4HadronicInteraction there is no state
aware methods: needs an “initialize” and “initialize for thread”	

10

Proposal	

•  G4HadronicInteraction::InitializeForMaster()	
 ,	
 ::I
nitializeForWorker()	

•  Virtual methods	

•  With default empty implementation	

•  Full backward compatibility	

•  Modify
G4HadronicProcess::RegisterMe(
 G4HadronicInteracti
on	
 *a	
)	
 to call the correct initialize	

•  Process knows if it is master or worker	

•  Limitation: to implement for worker models “GetMasterModel” is
more complex (but can be done with some caveats), do we need this?	

11

Possible implementation	

12

Conclusions	

•  A possible inclusion of MT capabilities in HAD framework is
possible in an evolutionary approach 	

•  Without changing public interfaces (e.g. only adds methods)	

•  Fully backward compatible	

•  One limitation: models do not have access to “master” model (can

be changed)	

•  Cross-sections are shared entirely (e.g. full object) in a very simple

way (single XS can still implement ad-hoc sharing of parts of data
strictures)	

	

