Parallel 7B Report

Hadronic Issues related to M.

A. Dotti, W. Pokorsky

Reports

* Discussion Session on implications of Multi Threading for Hadronics

framework
- "hot-topics’, first time we look at MT and HAD

* Contributions:

Makoto:“Use of ions for MT"

Witek: “Hadronics Cross Sections re-implementation and thoughts on
MT"

Mike:“General issues for MT: receipts and todos”

Andrea:“Memory profiling of hadronics and extension of hadrnoics

framework’’

How G4lonTable::Getlon() works in worker thread

[Getlon()]

N
Found
2 >[Getlon()]
Y
Y Found
?

Operations in
thread-local
objects

[register }<

Operations in
Shared objects
(Mutexed)

v
[Createlon()]

— |

(

[register }<

!
—>[return }

| return]

Use of lons in MT - Makoto Asai

lons Conclusions

Final design allows for creation “on the fly” of ions that are
G4Genericlon
* Same functionality ss in 9.6 (and before)

* Particles that have dedicated process-manager cannot use this
mechanism

These are shared among threads
* Final design minimize use of locks: absolutely mandatory minimize ion

creation during event loop

* Relies on table of ions to be created before event loop (to be prepared
by HAD WG)

* Size of table is a concern, will need iterations, smaller <1000 is MUCH
better

New CPU-optimized interfaces in G4lonTable
® In particular G4lonTable:GetMass(...)

Cross-Section Redesign for MT

1 AR

D AN

Cache in CHIPS XS

@ caching has been greatly simplified by moving to
per-element cross sections

@ we need to validate it in MT environment
@ probably need a lock for writing in the cache

@ writing in cache happens only at the
beginning (when going through new
materials), so lock should not be a

N

| Memory Trade_oﬂ-‘s I MT Had After 10.0

Balance between footprint (“memory used by thread”) and
churn ("memory needed during run")

Memory churn happens as small objects are created, used,
then destroyed asyncronously

Small blocks of free memory are left unusable by later, larger
allocation needs

e Eliminate temporary buffers (function-local ob-
jects/arrays/vectors)

e If class has thread-lifetime, use data member buffers

e Pass output objects into functions as non-const refer-
ences

Reducing Memory Footprint for MT

1 A

Dhm AN

* First analysis of what we can share in MT
* Top priorities:
* The hadronics most memory hungry (5MB) component is BIC
model. Some rework needed
* The second components using more memory are Cross=
sections (2.2MB) stored in G4CrossSectionDataStore

* | MB all processes together in first event. Comment during
discussion: need higher statistic can be under-estimate

* [tis realistic to reduce memory footprint for Hadronics of a
factor 2

* Step-by-step receipts to achieve this have been discussed
(involving removing G4 ThreadLocal and making objects “const™)

Hadronics Framework and MT

e An

* Need to implement possibility to initialize models differently per

worker and master

* Cross-sections are easier: factory mechanism guarantees simple
sharing design

* Memory profile guided: start from top offender; improve, repeat

* Evolutionary approach: framework is complex and we need to

get it right, we'll take the time we need

Conclusions

1 A

Dhm AN

* Now: migrate to new G4lonTable interfaces as appropriate
* For Geant4 Version 10:

* Implement changes in API for hadronic models base classes
* Verify sharing of cross-sections between thread
* Need action on BIC memory usage (Note: could be impossible to

fix In time, meta-programming implementation of few classes)

e For 2014

* Start migrate models to MT with sharing of memory consumption
items
* Proposal (to be further discussed): develop a generic MT-safe

“cache” to be used generally in G4

