
Evolving from “run to
completion” to checking the
output	

A.  Dotti for the Physics Validation Task Force	

Parallel Session 2B – Hadronic Testing	

2

Overview	

•  Automatic testing is done with ctest/cdash	

•  Almost all tests pass if “run to completion”	

•  In few cases output is verified against expected results:	

•  Ctest group: PhysicsChecks 	

•  Test67 : EM testing of gamma incident on Ge detector (only test with a

reference to an article)	

•  Test73 : MSC test based on LHCb geometry test	

•  SimplifiedCaloriemter : full physics simulation of hadronic showers	

•  Uses external package StatTest (developed by us) to statistically check
results against a reference	

•  In addition: phonon advanced example compares to reference,
however statistics is not adequate for PhysicsChecks (to be reviewed)	

3

Introduction	

•  Last year we presented the first experiences with ctest/cdash
based physics validation
https://indico.cern.ch/contributionDisplay.py?
contribId=3&sessionId=21&confId=199138	

•  Not so much has been done since then for hadronics	

•  SimplifiedCalorimeter is currently the only test being run every

night	

•  g4tools and g4analysis are now mature enough and can

simplify a lot the creation of physics testing	

4

Extend tests	

•  If a test produces physics results, it should add some physics
validation	

•  Run time should approximately 2 hours: restricted statistics	

•  But we can change this: run PhysicsChecks only on weekends for
several hours	

•  Tests anyway run in parallel	

•  Two ways of adding checks:	

•  Ad-hoc checking	

•  Comparison to reference	

5

Ad-hoc checks	

•  Simplest solution, just add code that checks the output and at
the end of run, write some logs.	

•  If it goes to G4cerr this will trigger a “failure” in

cdash	

•  Test73 and test67 implement this method	

•  Pro: simplest, developer can make very specific checks	

•  Cons: code duplication in some cases, cannot be shared with

other similar tests	

6

Comparison to reference	

•  StatTest package uses ROOT to compare a test output file
(in ROOT format) of a test and its output to a reference file	

•  It needs a simple text file for configuration:	

•  Which histograms / tree variables to check	

•  Which statistical test run (several provided), typically use p-value,

limits for “OK”, “BAD”, “NotSure”	

•  Produce text summary and graphical output	

7

Example

8

StatTest in your code	

•  Use of StatAccep test is more general:	

•  An additional test is added AFTER the MC simulation as a

separate step	

•  To add a new test, it is a matter of producing the test

configuration file (very easy in simple cases, believe me!)	

•  Can be used in CTest (see Parallel 1B) with macro

STATTEST_ADD_TEST	

•  Can be used “stand-alone” in bash shell	

9

Extensions	

•  I believe these tools are not used widely for two reasons:	

1.  Access of graphical output files	

2.  Reference handling	

10

Access to results 	

•  Results (graphics) are stored locally on the machine where job is
runs	

•  Difficult to access reports, deleted next night	

•  CDash reports error numbers and log summary, not enough for

physics checks	

•  Solution, since version 2.0 CDash supports file_upload

command	

•  Add file_upload to CMake file 	

•  Files are available from web-page	

11

Reference handling	

•  Currently reference files (ROOT binaries) are stored
together with source tree	

•  Periodically we need to update the reference with new results	

•  Proposal new repository and some additional utility in StatTest
(with CMake interfaces):	

•  upload_result	

•  make_reference	

12

Repository for references	

•  Similar to our other svn repositories:	

 g4tests/trunk/references/testName	

	
 	
 	
 	
 	
 	
 	
 	
 /tags/references/testName/_symbols/2013-­‐09-­‐16	

	
 	
 	
 	
 	
 	
 	
 	
 /branches/references/testName/_symbols/CurrentReference	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  Workflow:	

1.  Checkout references from CurrentReferences	

2.  Run test comparing with downloaded reference	

3.  After test is concluded, commit files to SVN	

4. Create a tag with date	

5.  If results are “red” human intervention is needed:	

•  If new results are considered improvements or expected, copy from latest
tag to branch in CurrentReference	

•  Next time test is run it will take new reference	

•  Steps 1-4 can be automatized and integrated in ctest	

•  Can we save all files? Do we have space limits? 	

13

Conslusions	

•  We can solve the two main issues currently preventing wider
use of automatic testing for physics	

•  Results plots can be uploaded to CDash	

•  Development of reference handling is needed	

•  However the most important point:	

•  Developers should provide tests/physics quantities to check!	

•  Using g4analysis, you do not have anymore excuses!	

