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Cross-section framework 
improvements and adaptation
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Factory and MT (1/2)

functionality of G4CrossSectionDataSetRegistry 
has been extended

responsible for instantiating cross sections

user should never ‘new’ cross section object

registry (singleton) provides the method 
GetCrossSectionDataSet(const G4String& name)

unique cross-sections objects (for a give cross 
section) shared across the application
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Factory and MT (2/2)

thanks to Andrea’s work this is now MT compatible

G4CrossSectionFactoryRegistry split from 
DataSetRegistry

G4CrossSectionDataSetRegistry is 
G4ThreadLocal

G4CrossSectionFactoryRegistry is shared among 
threads

cross sections shared
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Cross-section classes improvements 
and adaptation for MT
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My personal comment
This part of the talk should not be needed ;-)

Cross sections should have nothing (or very little) to do 
with MT

If cross sections needs adaption for MT it means that 
there is a problem with the design of cross-section classes

there should be nothing to improve in cross-sections 
for MT

cross sections (after some initialization) should be ‘read-
only’ functions of particle, energy, material, returning a 
number
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CHIPS-derived cross-
sections

bad design

enormous use of ‘statics’

completely not needed 

creating problems for MT

obscure code to implement cache

inefficient, error-prone, MT-unsafe
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Statics...
enormous abuse of 
statics in CHIPS-
derived code

none of those statics 
are needed!

9



Many of those repeated in 
several methods of the class

completely useless check

G4ElectroNuclearCross
Section
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Modifications

moved all the static consts to the beginning 
of the .cc file (outside any method)

they are static (local) in the compilation 
unit (.o file)

unitialized/calculated when loading the 
library - no problem anymore for MT

static variables moved to become data 
members
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Cache in CHIPS XS

caching has been greatly simplified by moving to 
per-element cross sections

we need to validate it in MT environment

probably need a lock for writing in the cache

writing in cache happens only at the 
beginning (when going through new 
materials), so lock should not be a problem
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Conclusion

cross section registry and factories ported 
to MT by Andrea 

most of the MT-related ‘tricks’ became not 
needed in CHIPS cross-sections

still need to look at the cache

my hope is that we can make all cross-
sections classes completely MT-neutral (and 
shared between all the threads)
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