
Cross-section 
improvements for MT

Witek Pokorski
26.09.2013

1



Content

Cross-section framework improvements and 
adaptation

Cross-section classes improvements and 
adaptation

2



Cross-section framework 
improvements and adaptation

3



Factory and MT (1/2)

functionality of G4CrossSectionDataSetRegistry 
has been extended

responsible for instantiating cross sections

user should never ‘new’ cross section object

registry (singleton) provides the method 
GetCrossSectionDataSet(const G4String& name)

unique cross-sections objects (for a give cross 
section) shared across the application

4



Factory and MT (2/2)

thanks to Andrea’s work this is now MT compatible

G4CrossSectionFactoryRegistry split from 
DataSetRegistry

G4CrossSectionDataSetRegistry is 
G4ThreadLocal

G4CrossSectionFactoryRegistry is shared among 
threads

cross sections shared

5



Cross-section classes improvements 
and adaptation for MT

6



My personal comment
This part of the talk should not be needed ;-)

Cross sections should have nothing (or very little) to do 
with MT

If cross sections needs adaption for MT it means that 
there is a problem with the design of cross-section classes

there should be nothing to improve in cross-sections 
for MT

cross sections (after some initialization) should be ‘read-
only’ functions of particle, energy, material, returning a 
number

7



CHIPS-derived cross-
sections

bad design

enormous use of ‘statics’

completely not needed 

creating problems for MT

obscure code to implement cache

inefficient, error-prone, MT-unsafe

8



Statics...
enormous abuse of 
statics in CHIPS-
derived code

none of those statics 
are needed!

9



Many of those repeated in 
several methods of the class

completely useless check

G4ElectroNuclearCross
Section

10



Modifications

moved all the static consts to the beginning 
of the .cc file (outside any method)

they are static (local) in the compilation 
unit (.o file)

unitialized/calculated when loading the 
library - no problem anymore for MT

static variables moved to become data 
members

11



Cache in CHIPS XS

caching has been greatly simplified by moving to 
per-element cross sections

we need to validate it in MT environment

probably need a lock for writing in the cache

writing in cache happens only at the 
beginning (when going through new 
materials), so lock should not be a problem

12



Conclusion

cross section registry and factories ported 
to MT by Andrea 

most of the MT-related ‘tricks’ became not 
needed in CHIPS cross-sections

still need to look at the cache

my hope is that we can make all cross-
sections classes completely MT-neutral (and 
shared between all the threads)

13


