Tools for Calculations in Microdosimetry and Radiobiology

Miguel A. Cortés-Giraldo

Dep. Atomic, Molecular and Nuclear Physics, University of Seville (Seville, Spain)

18th Geant4 Collaboration Meeting Seville, September 25th, 2013

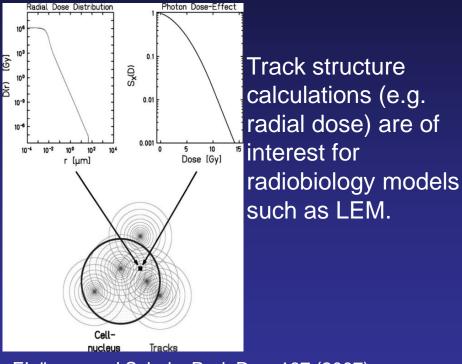
Introduction

Microdosimetry

Radiobiology

• Lineal energy = energy imparted over mean chord length:

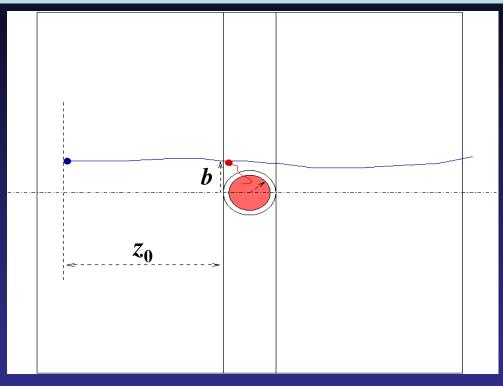
 $y = \frac{\varepsilon_{\rm s}}{\bar{l}}$


(mean chord length calculated assuming uniform irradiation condition)

 Frequency mean (yF) and dose mean (yD) lineal energy:

$$\bar{y}_f = \int_0^\infty y f(y) \mathrm{d}y$$

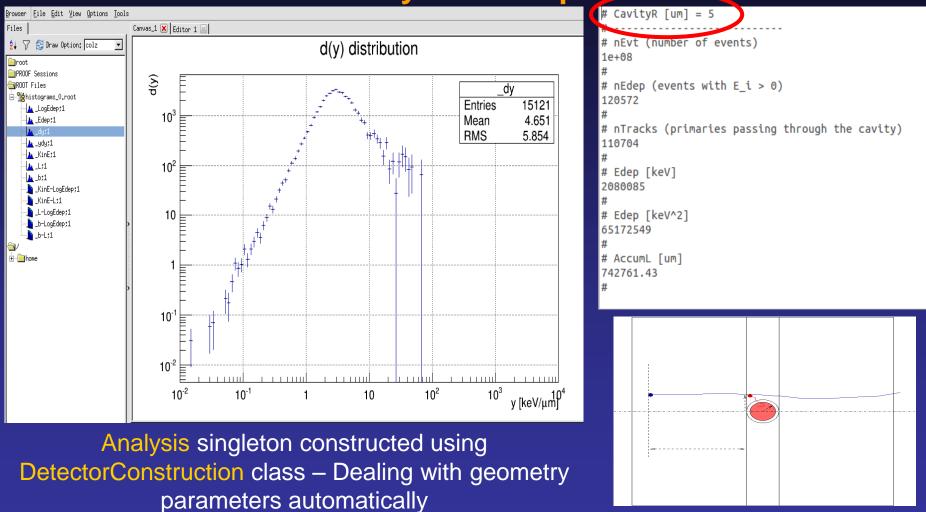
$$\bar{y}_d = \int_0^\infty y d(y) dy = \frac{1}{\bar{y}_f} \int_0^\infty y^2 f(y) dy$$


(Equivalent Dose = Dose × RBE)

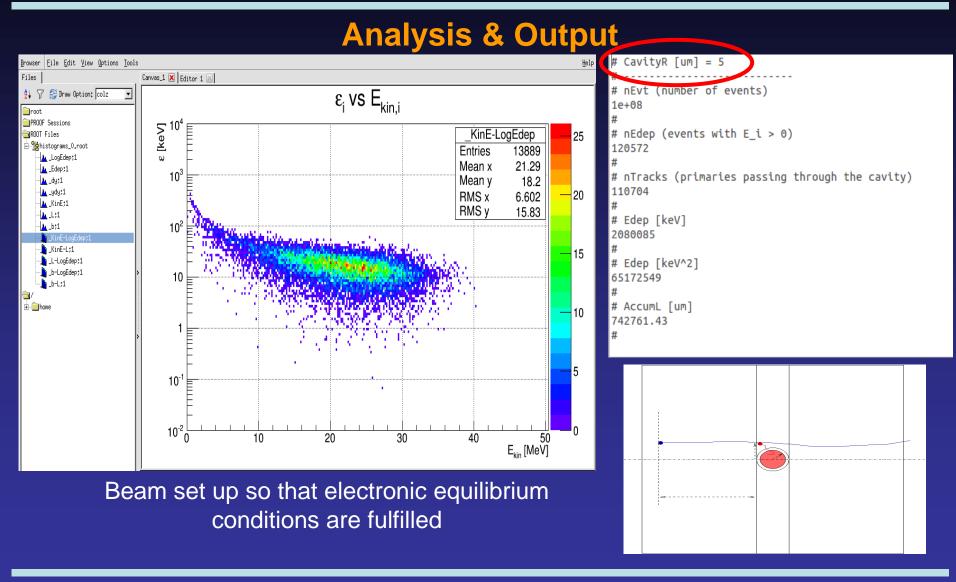
Elsässer and Scholz, Rad. Res. 167 (2007)

MicroCavity

Geometry

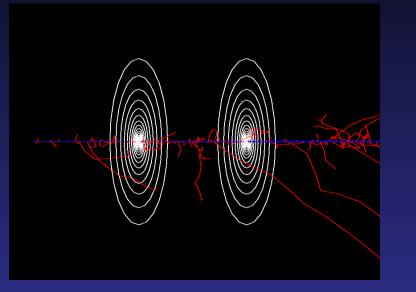


Scoring & Stepping Action


- SD/HIT for energy deposition and track length calculation within cavity.
- Kinetic energy and impact parameter of primary registered when entering the slab.

MicroCavity

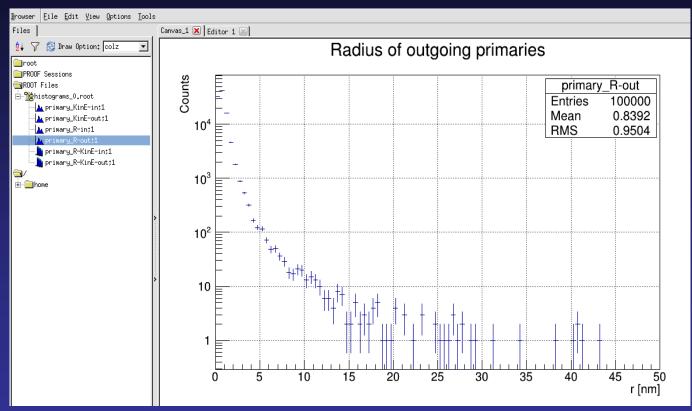
Analysis & Output



MicroCavity

Radial Dose Calculation (Track Structure)

Geometry

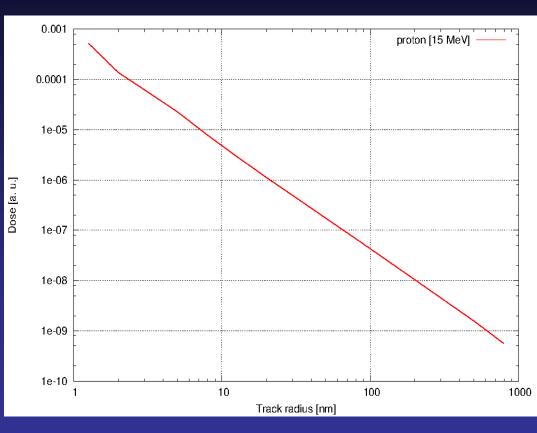

#######################################	#####	
### SETUP CONFIGURATION	###	
#######################################	#####	
/mygeom/worldR	100.0	um
/mygeom/worldMaterial	G4_WAT	ER
/mygeom/tallyMinR	1.0	nm
/mygeom/tallyMaxR	1.0	um
/mygeom/nBinsPerDecade	5	
/mygeom/tallyZ	10.0	um
/mygeom/tallyMaterial	G4_WAT	ER

/mygeom/addSensitiveLVs Tally

- Geometry designed for logarithmic scale representations.
- Pencil beam produced along cylinder axis.
- Electronic equilibrium condition is considered.
- Lateral scattering of primaries not biased.
- Not actually new (e.g. works by F. A. Cucinotta), but in my opinion an useful example.

Radial Dose Calculation (Track Structure)

Analysis (verification purpose)



It registers the distance-to-axis and kinetic energy distributions at the entrance and exit of the scoring cylinder

Radial Dose Calculation (Track Structure)

Output

	nEvt = 100000							
	nMaps = 16							
# T	Tally Material Name = G4_WATER							
# T	TallyZ[um] = 1							
# -								
# m	apID	copyI	D SumW	SumW2	MinR[nm]	MaxR[nm]		
	0	0	0.008280482	7.628597e-10	0	1		
	1	1	0.0005239912	1.013284e-11	1	1.58489		
	2	2	0.0001381418	6.840177e-13	1.58489	2.51189		
	3	3	5.620823e-05	7.528868e-14	2.51189	3.98107		
	4	4	2.270878e-05	1.16177e-14	3.98107	6.30957		
	5	5	7.921124e-06	1.80433e-15	6.30957	10		
	б	б	2.93595e-06	3.263278e-16	10	15.8489		
	7	7	1.123094e-06	6.408431e-17	15.8489	25.1189		
	8	8	4.426141e-07	1.331835e-17	25.1189	39.8107		
	9	9	1.745027e-07	2.771291e-18	39.8107	63.0957		
	10	10	6.893632e-08	5.703558e-19	63.0957	100		
	11	11	2.687665e-08	1.129605e-19	100	158.489		
	12	12	1.043164e-08	2.198453e-20	158.489	251.189		
	13	13	4.025791e-09	4.321643e-21	251.189	398.107		
	14	14	1.564305e-09	8.454298e-22	398.107	630.957		
	15	15	5.604409e-10	1.459878e-22	630.957	1000		

Other General Tools

Extended Primary Generator Class

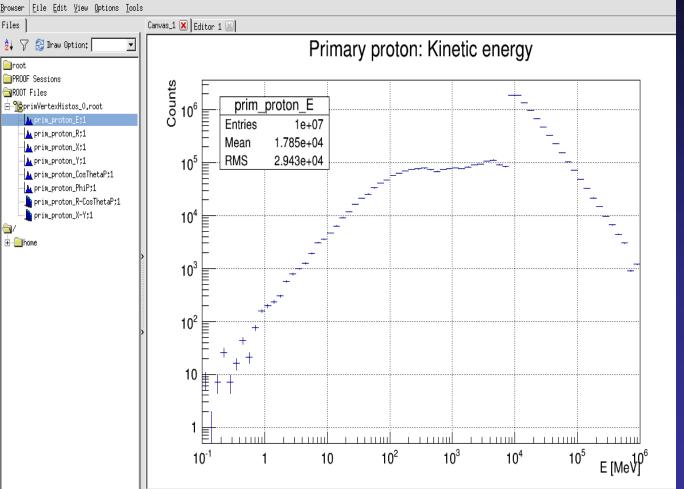
****** ### BEAM PROPERTIES (must be after Initialization) ### ***** /beam/particle proton #/beam/ion 6 12 0 /beam/energy/histoUnit MeV /beam/energy/ROOThistoFileName ../../../LETdVerifHistos_0 /beam/energy/ROOThistoName Peak_KinE /beam/source 610 #/beam/energy/mean 20.0 MeV #/beam/energy/sigma 2.4 MeV /beam/position/X0 0.0 um /beam/position/Y0 0.0 um /beam/position/Z0 -150.0 um /beam/position/radius 0150.0 um #/beam/position/sigma 0.5 mm

Includes capabilities such as creating primaries from histograms (either ASCII or ROOT format) and from IAEAphsp* files

* Cortés-Giraldo et al. IJRB 88:200-207 (2012)

```
Command /beam/source
Guidance :
Set the type of radiation source based on a
3-digit number:
 - 1st digit (hundreds): Energy Distribution.
    0 = mono or gaussian.
    3 = Histogram in ASCII file.
    6 = Using a ROOT histogram.
 - 2nd digit (tens): Position Distribution.
    0 = point or 2D Gaussian distribution.
    1 = uniform circular/elliptical distribution.
    2 = plane/rectangular surface.

    3rd digit (units): Angular Distribution.


    0 = fixed direction or 2D Gaussian aperture.
 Examples:

    Default value = 000

 - IAEAphsp file = 999
Parameter : choice
 Parameter type : i
 Omittable
                 : False
Idle> ls /beam/
Command directory path : /beam/
Guidance :
Set parameters of the beam.
 Sub-directories :
                   Set kinetic energy parameters of the beam.
   /beam/energy/
   /beam/position/
                     Position commands of the beam.
                     Momentum direction commands of the beam.
   /beam/momentum/
 Commands :
   source * Set the type of radiation source based on a
   IAEAphsp * Use a phase-space file as primary generator
   particle * Type of primary particle
   ion * Set an ion as beam particle.
Idle>
```

Other General Tools

Primary Vertex Verifier

Singleton class, similar to the Analysis singleton already presented.

Its goal is to help the user to discover potential bugs within his/her concrete Primary Generator Action class.

M. A. Cortés-Giraldo – 18th Geant4 Collaboration Meeting (Seville, 2013)

Thanks for your attention... ... and enjoy your stay in Seville!

