

LHCf; zero degree measurements for cosmic-ray model calibration

Takashi SAKO

(STE lab./KMI, Nagoya University)

for the LHCf Collaboration

Contents

- Physics Motivation
- Experiment
- Results from 0.9 and 7TeV pp collisions
- Low luminosity operation after LS1

Physics Motivation

Hadronic interaction model and CR

Proton shower and nuclear shower of same total energy

- CRs up to 10²⁰eV are observed
- Source, nature of the spectral shape, chemical composition (Fig) are unknown
- Players: EPOS, QGSJET, SIBYLL, DPMJET models

Where to be measured at colliders?

multiplicity and energy flux at LHC 14TeV collisions

Most of the particles produced into central, Most of the energy flows into **forward**

Experiment

The LHC forward experiment

- All charged particles are swept by dipole magnet
- Neutral particles (photons and neutrons) arrive at LHCf
- 0 degree is covered

LHCf Detectors

- √ Imaging sampling shower calorimeters
- √ Two calorimeter towers in each of Arm1 and Arm2
- ✓ Each tower has 44 r.l. of Tungsten,16 sampling scintillator and 4 position sensitive layers

Arm#1 Detector 20mmx20mm+40mmx40mm 4 XY SciFi+MAPMT

Arm#2 Detector 25mmx25mm+32mmx32mm 4 XY Silicon strip detectors

LHCf Detectors

- √ Imaging sampling shower calorimeters
- √ Two calorimeter towers in each of Arm1 and Arm2
- ✓ Each tower has 44 r.l. of Tungsten,16 sampling scintillator and 4 position sensitive layers

Arm#1 Detector

Plastic scintillators and SciFi are replaced with rad-hard GSO plates and GSO bars, respectively, during LS1. Operation is possible up to 1MGy corresponding to 500 pb⁻¹ at 14TeV p-p collisions. (actual problem is pile-up; discuss later)

Arm#2 Detector 25mmx25mm+32mmx32mm 4 XY Silicon strip detectors 40mm

Vertical movement and scan

Calorimeters viewed from IP

- √ Geometrical acceptance of Arm1 and Arm2
- ✓ Crossing angle operation enhances the acceptance

Which E-p_T range LHCf sees?

πηοτονσ

(αχχεπτανχε νοτ χονσιδερεδ)

 $\Box^0(A\rho\mu 1)$

(αχχεπτανχε χονσιδερεδ)

(pp 7TeV, EPOS)

Results from 900GeV and 7TeV pp collisions

Summary of LHCf data taking

900 GeV p-p collisions (2009-2010)

- > Total of 42 hours for physics (0.3 nb⁻¹ delivered)
- ➤ About 10⁵ shower events in Arm1+Arm2
- Photon spectra published (2012)

7 TeV p-p collisions (2010) (detectors were removed in Jul. 2010)

- > Total of 150 hours for physics with different setups (350 nb⁻¹ delivered)
 - ✓ Different vertical position to increase the accessible kinematical range
 - ✓ Runs with or without beam crossing angle
- ~ 4x10⁸ shower events in Arm1+Arm2
- \geq ~ $10^6 \, \pi^0$ events in Arm1 and Arm2
- \triangleright Photon spectra (2011) and π^0 spectra (2012) published

5 TeV (Vs_{NN}) p-Pb and 2.76 TeV p-p collisions (2013) (only Arm2 reinstalled)

- > 1.6x10⁸ shower events in p-Pb
- > 5x10⁶ shower events in p-p
- ATLAS was triggered by LHCf at 20-40 Hz
- \triangleright 0.8m β^* in p-Pb made a wide beam dispersion \odot

Photon spectra @ 7TeV (Data vs. Models)

Adriani et al., PLB, 703 (2011) 128-134

Photon spectra @ 900GeV

Adriani et al., PLB, 715 (2012) 298-303

900GeV vs. 7TeV

- ✓ Normalized by # of evnetsX_F > 0.1
- ✓ Statistical error only

Good agreement of X_F spectrum shape between 900 GeV and 7 TeV. What will happen at 13 TeV and beyond?

π⁰ p_T distribution in different rapidity (y) ranges

Adriani et al., PRD, 86, 092001 (2012)

$\pi^0 < P_T >$

 $\langle p_T \rangle$ comparison with UA7 at 630GeV (Pare et al., PLB, 242, 531 (1990))

Low luminosity operation after LS1

Operation at 13 TeV p-p

> Physics

- Highest possible accelerator energy (E_{lab}=10¹⁷eV) to approach CR region
- Test vs scaling (or dependence) from 900GeV to extrapolate over 13 TeV

> (minimum) Statistics

Several sets of 1nb⁻¹ collision data in early period (even during machine commissioning)

Constraints

- DAQ limits >2us event interval
- DAQ speed <1kHz
- Negligible pile-up => O(0.01)
- Small collision angle dispersion <10urad; high β*

> Ideal beam requirements

- $-N_b=43$, L=5x10²⁸ cm⁻² s⁻¹ => 1nb⁻¹/5h (UNIT)
- β*>≈5m; just unsqueezed collision

> Operation requirements

- Several sets of UNIT operation
- Two operation periods (pilot and main) separated by a week

Summary

> LHCf is

- Motivated to improve CR simulations
- A kind of ZDCs installed in the TANs at IP1
- Capable to test models with ≈ nb⁻¹ of data
- Upgrading the detectors to be rad-hard during LS1, enabling operation up to 500 pb⁻¹
- Hoping 0(10nb⁻¹) of low luminosity (<10²⁹) operation after LS1
- Interested in joining the discussion for p-Pb after LS1
- Interested in future light ion collisions for CR physics

To classify various requests... (No machine duty cycle considered)

