

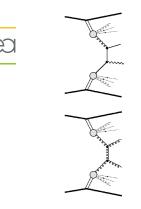
Probing the Pomeron quark structure using γ +jet and dijet events

M. Saimpert, C. Royon, D. Werder, C. Marquet

CEA Saclay - Irfu/SPP

May 16th 2013

- Resolved Pomeron model
 - Protons interact via a **double Pomeron exchange**
 - Diffractive mass produced from the interaction of two quarks/gluons from **each of Pomerons**



- Resolved Pomeron model
 - Protons interact via a double Pomeron exchange
 - Diffractive mass produced from the interaction of two quarks/gluons from each of Pomerons
- Pomeron structure
 - Never been checked experimentally at 14 TeV
 - Constraints exist on the sum of quark density and the gluon distribution from F^D₂ measurement (HERA) assuming the Pomeron is made of quarks and gluons
 - u=d=s and q=qbar have been assumed so far

- Resolved Pomeron model
 - Protons interact via a double Pomeron exchange
 - Diffractive mass produced from the interaction of two quarks/gluons from each of Pomerons
- Pomeron structure
 - Never been checked experimentally at 14 TeV
 - Constraints exist on the sum of quark density and the gluon distribution from F^D₂ measurement (HERA) assuming the Pomeron is made of quarks and gluons
 - u=d=s and q=qbar have been assumed so far
- With the LHC
 - Possible check of Pomeron universality between hadronic and ep colliders
 - New constraints on quark densities difference

- Resolved Pomeron model
 - Protons interact via a double Pomeron exchange
 - Diffractive mass produced from the interaction of two quarks/gluons from each of Pomerons
- Pomeron structure
 - Never been checked experimentally at 14 TeV
 - Constraints exist on the sum of quark density and the gluon distribution from F^D₂ measurement (HERA) assuming the Pomeron is made of quarks and gluons
 - u=d=s and q=qbar have been assumed so far
- With the LHC
 - Possible check of Pomeron universality between hadronic and ep colliders
 - New constraints on quark densities difference
- Other models as Soft Color Interaction (SCI) model does not use Pomeron to describe DPE

Why γ +jet and dijet events?

- γ +jet inclusive production
 - Herwig process ID 1800
 - Main mechanism : q+g
 - High σ dependance on quark PDFs
 - $\blacksquare \ \sigma \simeq 1 \ {\rm pb}$ after cuts and selection
- dijet inclusive production
 - Herwig process ID 1500
 - Main mechanism : g+g
 - Low σ dependance on quark PDFs
 - $\sigma \simeq 1,000$ pb after cuts and selection
- All leading order subprocesses implemented

Purpose: evaluate $\frac{\sigma_{\gamma+jet}}{\sigma_{dijet}}$ for various PDFs patterns to determine if measurement is sensitive to Pomeron quark structure

Herwig ID 1800 and 1500: list of Subprocesses

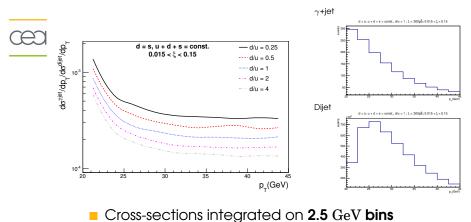
IHPRO	1+2	®	3 + 4	c/f conn.
41	q + q	®	g + g	2314
42	q + g	®	q + g	3124
43	q + q	®	g + g	3124
44	q - + g	®	q-+g	2314
45	g + q	®	q + g	2314
46	g + q	®	q-+g	3124
47	g + g	®	g + g	2314
51	g+ q	®	g+ q	1423
52	g+ <i>q</i> -	®	g+ q-	1342
53	g+ <i>g</i>	®	q + q	1423
61	q + q	®	g+g	2134
62	q - + q	®	g+g	2134
63	g + g	®	g+g	2134
71	g+ q	®	M(S=0) + q'	1432
72	g+ q	®	M(S=1)L+q'	1432
73	g+ q	®	$M(S=1)_T+q'$	1432
74	g+ q-	®	$M(S=0)+q^{-1}$	1432
75	g+ q-	®	$M(S=1)_L+q^{-1}$	1432
76	g+ <i>q</i> -	®	$M(S=1)_T+q^{-1}$	1432

Table 12: Direct photon subprocesses.

THPRO	1 + 2	Ø	3 + 4	c/f conn.
1	a + a	8	a + a	3421
2	q + q	n	q + q q + q	4312
3	q + q'	8	q + q'	3421
4		8	q' + q'	2413
5	q + q	8		3142
6	q + q	8	q + q	2413
7	q + q	8	q + q	2413
	q + q	_	g + g	
8	q + q	8	g + g	2341
9	$q + q^{-1}$	8	$q + q^{-1}$	3142
10	q + g	8	q + g	3142
11	q + g	8	q + g	3421
12	q + q	8	$q^{-'} + q'$	3142
13	q + q	8	q + q	2413
14	q + q	8	q + q	3142
15	q- + q	8	g + g	3142
16	q + q		g + g	4123
		-		
17	q + q'	6	q + q'	2413
18	$q^{-} + q^{-}$	8	q-+q-	4312
19	q- + q-	ß	q- + q-	3421
20	q-+q-'	8	q + q'	4312
21	q-+g	8	q + g	2413
22	q + g		q + q	4312
23	g + q		g + q	2413
24	g + q	6	g + q	3421
25	g + q-	8	g + q	3142
26	g + q-		g + q-	4312
27	g + g	®	q + q	2413
28	g + g	8	q + q	4123
29	g + g	B	g + g	4123
		-		
30	g + g	6	g + g	4312

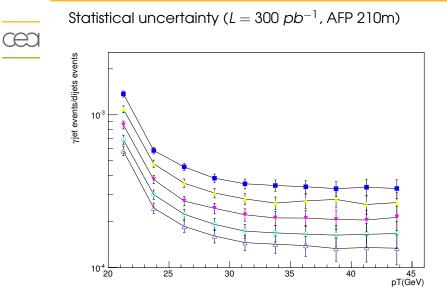
Table 11: QCD subprocesses.

Simulation parameters and Cuts

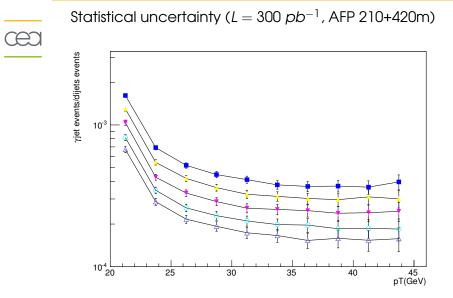

- FPMC generator has been used (N = 1,000,000 events for each interaction)
 - $0.015 < \xi < 0.15$ (AFP 210 metres)
 - 0.0015 < ξ < 0.15 (AFP 210+420 metres)</p>
- Jet reconstruction with antikT algorithm (FastJet package)
 - R = 0.6 (ATLAS Standard)
 - $p_{T,jet(s)} > 20 \text{ GeV}$
- Photon selection: $p_{T,\gamma} > 20 \text{ GeV}$
- Photons and jets are central in ATLAS (η < 2.5)
- Data normalized for $L = 300 pb^{-1}$ (3 weeks low luminosity dedicated run)

■ u+d+s = constant, d=s and $d/u \in \{0.25, 0.5, 1, 2, 4\}$ ■ u+d+s = constant, d=u and $d/s \in \{0.25, 0.5, 1, 2, 4\}$

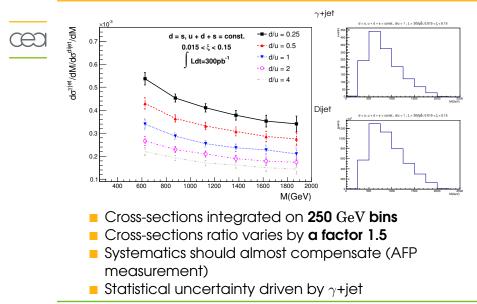
d/u results : cross-section ratio

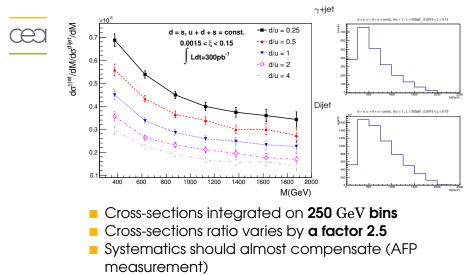


d/u results : $p_{T,jet}$ differential cross-section ratio, $\sqrt{s} = 14 \text{ TeV}$

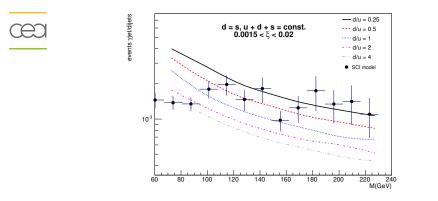


- Cross-sections ratio varies by a factor 4
- Jet Energy Scale (JES) systematics should compensate (but not resolution)
- Statistical uncertainty driven by γ+jet


d/u results : $p_{T,jet}$ differential cross-section ratio, $\sqrt{s} = 14 \text{ TeV}$


d/u results : $p_{T,jet}$ differential cross-section ratio, $\sqrt{s} = 14 \text{ TeV}$

d/u results : $M_{p-p}(=\sqrt{\xi_1\xi_2s})$ differential cross-section ratio, $\sqrt{s} = 14$ TeV



d/u results : $M_{p-p}(=\sqrt{\xi_1\xi_2s})$ differential cross-section ratio, $\sqrt{s} = 14$ TeV

Statistical uncertainty driven by γ +jet

$M_{p-p}(=\sqrt{\xi_1\xi_2s})$ observable : A way to discriminate Pomeron from SCI model?

- Need to be out from the SCI background : ξ < 0.02 (probably overestimated)
- SCI : flat distribution
- Preliminary plot

 γ+jet/dijet events study is a good probe of Pomeron structure

- Requires dedicated low luminosity runs
- Measurement would be relevant as of $L = 300 \ pb^{-1}$ ($\simeq 3$ weeks of data) with AFP 210 m

 γ+jet/dijet events study is a good probe of Pomeron structure

- Requires dedicated low luminosity runs
- Measurement would be relevant as of $L = 300 \ pb^{-1}$ ($\simeq 3$ weeks of data) with AFP 210 m
- Statistical uncertainty driven by γ+jet

Test of the Pomeron model

- Universality of the Pomeron between ep (HERA) and hadronic (LHC) colliders
- New constrains on quark PDFs are possible with the LHC

 γ+jet/dijet events study is a good probe of Pomeron structure

- Requires dedicated low luminosity runs
- Measurement would be relevant as of $L = 300 \ pb^{-1}$ ($\simeq 3$ weeks of data) with AFP 210 m
- Statistical uncertainty driven by γ+jet

Test of the Pomeron model

- Universality of the Pomeron between ep (HERA) and hadronic (LHC) colliders
- New constrains on quark PDFs are possible with the LHC
- Possible way to discriminate Pomeron model from Soft Color Interaction model (preliminary results)

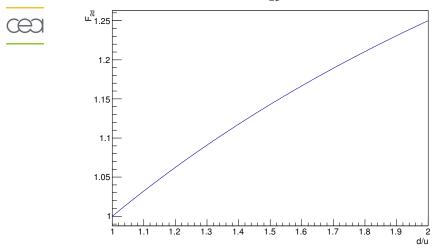
 γ+jet/dijet events study is a good probe of Pomeron structure

- Requires dedicated low luminosity runs
- Measurement would be relevant as of $L = 300 \ pb^{-1}$ ($\simeq 3$ weeks of data) with AFP 210 m
- Statistical uncertainty driven by γ+jet

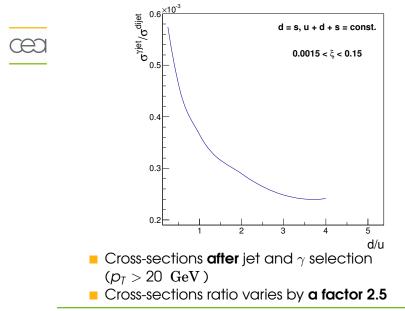
Test of the Pomeron model

- Universality of the Pomeron between ep (HERA) and hadronic (LHC) colliders
- New constrains on quark PDFs are possible with the LHC
- Possible way to discriminate Pomeron model from Soft Color Interaction model (preliminary results)

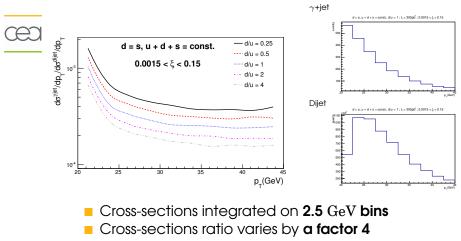
Study of **d/s** in progress. **A paper is being drafted**.



M. Saimpert, C. Royon, D. Werder, C. Marquet


CEA Saclay - Irfu/SPP

May 16th 2013


F_2^D variations

d/u results : cross-section ratio

d/u results : *p_{T,jet}* differential cross-section ratio

- Jet Energy Scale (JES) systematics should compensate (but not resolution)
- Statistical uncertainty driven by γ +jet

Back-up slides