STATUS AND PROSPECTS FOR CENTRAL EXCLUSIVE PRODUCTION AT LHCB

Ronan McNulty (UCD Dublin)

LHC WG on Forward Physics and Diffraction

<u>Overview</u>

- Unique attributes of LHCb
- Status
 - Exclusive J/ψ and ψ' [JPG 40 (2013) 045001.]
 - Exclusive χ_c [[LHCb-CONF-2011-022]
 - Exclusive γγ→μμ [LHCb-CONF-2011-022]
- Near Future (with 2010,11,12 data)
 - Vector mesons
 - Charm
- Future running
 - Possible upgades

Elastic diffractive: clean environment to study vacuum, and in particular, transition between soft and hard pomeron.

Elastic diffractive: clean environment to study vacuum, and in particular, transition between soft and hard pomeron.

Elastic diffractive: clean environment to study vacuum, and in particular, transition between soft and hard pomeron.

The LHCb detector

Fully instrumented within $1.9 \le \eta \le 4.9$ Trigger: $p_{\mu} > 3$ GeV, $pt_{\mu} > 0.4$ GeV, $m_{\mu\mu} > 2.5$ GeV

Advantages for CEP

- Quite wide pseudorapidity coverage
 - Forward track 1.5<η<5.
 - Backward track -1.5>η>-3. (depends on z_{beam})
- Ability to trigger on low p_T leptons, pions, kaons, photons
 - Muons: p_T>400 MeV
 - Hadronic energy: E_T >1 GeV
 - Particle identification with RICH: π, K, p
- Low beam pile-up conditions throughout 2010,11,12.
 - 2010: 37pb⁻¹. 21% is single interaction
 - 2011: 1fb⁻¹. 24% has single interaction
 - 2012: 2fb⁻¹. 19% has single interaction

Graphical Representation

Effect of rapidity gap requirement on muon triggered events

All triggered events

With veto on backward tracks

Current results: CEP di-muon signals

SuperChic: L. Harland-Lang, V. Khoze, M. Ryskin, W. Stirling, EPJ.C65 (2010) 433-448

Starlight: S.R. Klein & J. Nystrand, PRL 92 (2004) 142003.

LPAIR: J.A.M. Vermaseren, NPB 229 (1983) 347.

Before and after requiring precisely two tracks

Exclusive J/ψ and ψ(2S)

OPEN ACCESS

IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 40 (2013) 045001 (17pp)

doi:10.1088/0954-3899/40/4/045001

Exclusive J/ψ and $\psi(2S)$ production in pp collisions at $\sqrt{s} = 7$ TeV

Results based on 37pb⁻¹ of data taken in 2010

Motivations:

- Deeper understanding of QCD
- Sensitivity to PDF
- Search for odderon
- Search for saturation effects

Sensitivity to gluon PDF

 $xg \propto x^{-\lambda}$

Gluon PDF enters squared

Leading order cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \left(\gamma^* p \to J/\psi \; p \right) \bigg|_{t=0} = \frac{\Gamma_{ee} M_{J/\psi}^3 \pi^3}{48\alpha} \left[\frac{\alpha_s(\bar{Q}^2)}{\bar{Q}^4} x g(x, \bar{Q}^2) \right]^2 \left(1 + \frac{Q^2}{M_{J/\psi}^2} \right)$$

Examples of dependence of Jpsi cross-section on PDF (left) and extraction of gluon PDF (right) from Martin, Nockles, Ryskin, Teubner, arXiv:0709.4406v1

Search for odderon

Motyka, DIS 2008.

Non-resonant background very small

Distributions are not background-subtracted. 37pb-1 of data: $1492 \text{ J/}\psi$ and $40 \psi(2s)$

Cross-section measurement

Purity:

- 1. non-resonant bkg (1%)
- 2. Chi_c feeddown (9%)
- 3. Psi' feedown (2%)
- 4. Inelastic Jpsi production (30%)

Number of events observed

$$\sigma = \frac{pN}{\varepsilon L}$$
 Luminosity

Efficiency:

- Trigger
- 2. Tracking & muon id.
- 3. Single interaction beam-crossing $P(n) = \frac{\mu^n e^{-\mu}}{n!}$

$$-P(n) = \frac{\mu^n e^{-\mu}}{n}$$

Feed-down backgrounds

Inelastic background

Characterise p_T spectrum of background using shapes with 3-8 tracks and extrapolate to 2 track case.

Inelastic background

Signal shape

Estimated from Superchic using exp(- b p_T^2) (arXiv: 0909.4748) Take b from HERA data. Extrapolate to LHCb energies to get b= 6.1 +/- 0.3 GeV⁻² Crosscheck: Fit to spectrum below with b free gives b = 5.8 +/- 1 GeV⁻²

Inelastic background shape

Estimated from data. Characterise shape for 3-8 tracks and extrapolate to 2 tracks.

This approach works for QED production of dimuons, tested using LPAIR simulation.
Also checked with PYTHIA simulation of diffractive events.

LHCb compared to theory & experiment

Predictions	$\sigma_{pp o J\!/\!\psi\;(o\mu^+\mu^-)}$	$\sigma_{pp \to \psi(2S)(\to \mu^+\mu^-)}$			
Gonçalves and Machado	275				
STARLIGHT	292	6.1			
Motyka and Watt	334				
SuperChic ^a	396				
Schäfer and Szczurek	710	17			
LHCb measured value	$307 \pm 21 \pm 36$	$7.8 \pm 1.3 \pm 1.0$			

^a SuperChic simulation does not include a gap survival factor.

All predictions (bar Schaefer&Szcaurek) have similar approach and give similar results and are consistent with our data.

LHCb compared to HERA

LHCb c/s is HERA c/s weighted by photon spectrum + gap survival factor (r)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y}_{pp\to pVp} = r(y) \left[k_{+} \frac{\mathrm{d}n}{\mathrm{d}k_{+}} \sigma_{\gamma p\to Vp}(W_{+}) + k_{-} \frac{\mathrm{d}n}{\mathrm{d}k_{-}} \sigma_{\gamma p\to Vp}(W_{-}) \right].$$

$$k_{\pm} \approx (m_V/2) \exp(\pm |y|),$$

LHCb differential data fitted assuming power law dependence $\sigma(W) = aW^{\delta}$

$$a = 0.8^{+1.2}_{-0.5} nb$$

$$\delta = 0.92 \pm 0.15$$
Power law results
$$\delta = 0.72$$
HERA

LHCb compared to theory & experiment

Deviations from power law

Saturation model (Motyka&Watt PRD 78 2008 014023) has deviation from pure power law.

Vacuum state should be 0

Photon-photon and Pomeron-pomeron dimuon production

Photon-photon and Pomeron-pomeron

dimuon production

LHCb-CONF-2011-022

$\sigma_{\chi_{c0}\to\mu+\mu-\gamma} =$	9.3	+/-	2.2	+/-	3.5	+/-	1.8	pb
$\sigma_{\chi_{c1->\mu+\mu-\gamma}} =$	16.4	+/-	5.3	+/-	5.8	+/-	3.2	рb
$\sigma_{\chi_{c2->\mu+\mu-\gamma}} =$	28.0	+/-	5.4	+/-	9.7	+/-	5.4	pb
$\sigma_{\gamma\gamma->\mu+\mu}$. = 67	+/-	10	+/-	5 +/	- 15	рb	

SuperChic	(BR)
14 pb	1%
10 pb	34%
3 pb	20%
LPAIR	
42pb	

In broad agreement with theory and enhanced X_{c0} due to J_z =0 selection rule. X_{c2} higher than prediction, but non-elastic background may be larger than for X_{c0}

Future measurements with current data

100 times as much data being analysed

Extensions to 2010 measurements

- <2% measurement of luminosity possible</p>
- More precise fits to determine backgrounds to Xc0,Xc1,Xc2
- Precise measurement of J/ψ power law dependence
- Measurement of other vector mesons

LHCb compared to theory & experiment

Future measurements with current data

- 100 times as much data being analysed
- Extensions to 2010 measurements
 - <2% measurement of luminosity possible</p>
 - More precise fits to determine backgrounds to Xc0,Xc1,Xc2
 - Precise measurement of J/ψ power law dependence
 - Measurement of other vector mesons
- New ideas using hadronic modes
 - Pion or kaon pairs e.g. from Xc0.
 - Combine leptons and hadrons: search for X(3872), X(4260)
 - New trigger in 2012 data

Triggering on CEP→hadrons

Low multiplicity hadronic final states require special treatment to survive LHCb trigger June 2012: New Trigger implemented → significant improvement!

Threefold strategy:

Use of "Pile-up" stations ("upstream" silicon sensors) at L0 stage to veto backwards activity

High rate real-time triggering exploiting small events and short processing times.

+

Soft p_T cuts and reconstruction of resonances, using particle ID, in trigger

Silicon sensors at 8.2<R<42mm and z>-315mm 40 MHz readout Very effective VETO

Triggering on CEP->hadrons

- Charm spectroscopy in CEP events.
- Selection of D,K_s,Φ at trigger level.

e.g. improvement in D* yield in low multiplicity events

Future running (2015-)

- Are the events truly CEP?
 - Measurements are limited by uncertainty with what is happening outside of our acceptance, in particular, close to the beam.
- Solutions:
 - Increase the coverage; extend the rapidity gap.
 - Measure the recoiling protons.

Increase the rapidity gap:

Modest extension of gap already possible vetoing on any activity in VELO

but you really want to fill in the region $5 < \eta < 9$

Future running:

- Near future: Increase the gap
- Thoughts of installing scintillators in the tunnel
 - Given the beam-pipe radius, these would need to be ~100m from interaction point in order to improve on the existing excellent forward reach of LHCb.
 - May or may not be incorporated into trigger.
- Further future:
- Ideally would like proton taggers from 2018.
 - Could learn a lot from existing design experience of ATLAS/CMS.

Conclusions

- LHCb, due to its forward acceptance and running conditions is well suited to investigating CEP.
- CEP measurements using muons have been performed at LHCb
- More muon analyses and hadron analyses currently underway.
- We need to increase our rapidity gap
- Welcome this forum:
 - discussion with theorists on priorities for measurements.
 - discussions on future improvements to detector.