Higgs to Ily at CMS (for discussion)

Stoyan Stoynev

Northwestern University

for CMS

Scope of the current discussion

- 1. Due to the short notice the views expressed are based on only few people from CMS working on $H \rightarrow Z_{\gamma}$ analyses
- 2. There is a particular emphasis on low di-lepton invariant mass because
 - 1. the Higgs Dalitz decays are best distinguished there
 - 2. there is no supported MC simulation for these
 - 3. there is an on-going experimental effort in this region depending a lot on theoretical input

The shift in the Br($H\rightarrow \gamma\gamma$) due to the Dalitz decay correction.

arXiv:0704.3987v2 [hep-ph]

$H\rightarrow IIy$ theoretical inputs

For a SM Higgs of M=125 GeV there are the following assumed facts (LHC@8 TeV)

Muon modes:	$H \rightarrow Z\gamma/H \rightarrow \gamma\gamma$	$H \rightarrow Z\gamma/H \rightarrow ZZ$	$H \rightarrow Z\gamma/H \rightarrow \mu\mu$	
rate ratio	2.3 x 10 ⁻²	1.7 (only Z →μμ)	0.24	$X (A\epsilon)_{H \to Z_{\gamma}} / (A\epsilon)_{REF}$

Production cross-section of $H \rightarrow Z(\mu \mu) \gamma$: ~1.0 fb

Normalized to $H \rightarrow \gamma \gamma$ differential decay rates

Figure 4: The invariant mass distributions of $h \to \gamma e^+ e^-$ normalized by $\Gamma(h \to \gamma \gamma)$. The red line denotes the contribution of the tree diagrams, the thin solid line denotes the contribution from the γ^* pole diagrams, and the dashed line the contribution from the Z^* pole diagrams while the thick line gives the total contributions. The dotted line denotes the contribution from the four-point box diagrams.

arXiv:1303.2230v1 [hep-ph]

$H\rightarrow II\gamma$ in MCFM

Higgs Dalitz decay is **simulated in MCFM*** (no detector effects!) with a mass of 126 GeV @8 TeV center-of-mass.

There are limited number of cuts applied (min[M(II) = 300 MeV]) and there are various constants used I will not list (QCD factorization and renormalization scales are set at 50 GeV, PDF set is CTEQ6M, ...).

Roughly half the $H\rightarrow II_{\gamma}$ events come from below the Z peak

Z/y* mass range (GeV)	60-120	50-120	0.3-50	0.3-20	0.3-5	0.3-2	0.3-1
σ , fb	0.881	0.896	0.741	0.653	0.487	0.373	0.289
Fraction in % (wrt 0.3-120 GeV)	54	<u>55</u>	<u>45</u>	40	30	22.5	17.5

^{*} http://mcfm.fnal.gov/

$H\rightarrow II_{\gamma}$ in the CMS experiment

- \rightarrow H \rightarrow $\gamma\gamma$
 - although conversions (to ee) are allowed they are cut out if they originate from inside the beam pipe
 - thus no genuine $H \rightarrow II_{\gamma}$ events can survive (in first order)
- H→Zγ
 - we investigate the Z decaying to light leptons
 - the di-lepton invariant mass is studied above 50 GeV
 - thus the rate is dominated by the Z pole (as we would like for this study)
 - still -virtual contributions change the rate (of $H \rightarrow \gamma \gamma$ as well)
 - there is small contamination from $H\rightarrow \mu\mu$ (predominantly FSR)
- Higgs Dalitz decays
 - there is an on-going effort to study the di-lepton invariant mass spectrum below 50 GeV
 - we have proper high-efficient triggers for the muon channel
 - we still have to asses the plausibility of studying other channels (electrons, quarks)
 - overall -the current lack of supported MC simulation does not help
- Drell-Yan contamination
 - the main backgrounds come from Drell-Yan + photon (jets) events
 - these could be both FSR or ISR events
 - there is likely sizable pp $\rightarrow y^*y$ (correction to DY) contamination at low M(y^*)

$H \rightarrow Z\gamma$ in the CMS experiment

Table 1: Luminosity and observed data yields used in the analysis. Expected signal yields for a 125 GeV SM Higgs boson.

Sample	Luminosity	num. of events	num. of events	num. of events
	(fb^{-1})	$100 < m_{\ell\ell\gamma} < 180 \text{ GeV}$	$120 < m_{\ell\ell\gamma} < 150 \text{ GeV}$	predicted for
		,	'	$m_{\rm H}=125{ m GeV}$
2011 ee	4.98	2268	1041	1.2
2011 μμ	5.05	2739	1223	1.4
2012 ee	19.62	12482	5534	6.3
2012 μμ	19.62	13392	5993	7.0

Figure 1: $m_{\ell\ell\gamma}$ spectrum in the electron and the muon channels for the 7 and 8 TeV data combined. Also shown is the expected signal due to a 125 GeV standard model Higgs scaled by 100 and the sum of the individual fits made to the data for each channel and event class.

Highlights from

CMS-PAS-HIG-13-006

We are still only sensitive to rates exceeding the SM expectations ~ten times (at M(H)=125GeV).

Figure 4: Exclusion limit on the cross section of a SM Higgs boson decaying into Z-boson and a photon as a function of the Higgs boson mass based on $5.0 \, \mathrm{fb^{-1}}$ of data taken at 7 TeV and $19.6 \, \mathrm{fb^{-1}}$ at 8 TeV.

Reminder: M(II)>50 GeV

Contribution from $H\rightarrow Z\mu\mu$ to $H\rightarrow \mu\mu\gamma$

- BR of H→μμ @ 125GeV : 2.20E-04
- BR of H→Zγ @ 125 GeV : 1.54E-03
 - however, if we mainly look into $H \rightarrow Z\gamma \rightarrow \mu \mu \gamma$, BR becomes 5.18E-05

	ggF	VBF
H→Zγ	6.10	0.51
Η→μμ	0.34	0.03
H→ZZ	0.20	0.02

Features of $H\rightarrow Il\gamma$ (plausibility for measurements)

Features of $H\rightarrow Il_{\gamma}$ (plausibility for measurements) /2/

Features of $H\rightarrow II\gamma$ (plausibility for measurements) /3/

- ◆ At low di-lepton invariant masses the photon is relatively energetic and back to back to leptons (fermions)
 - good resolution
 - well separated from other objects
- The separation of leptons depends (linearly) on their invariant mass
 - they are on top of each other (at IP!) at zero mass
 - ho experimentally they are still distinguishable as studies on data and MC show for muons the efficiency is also high, at least 80%
 - electrons and jets may be more problematic (at least at very small masses)
- At high invariant masses (around the Z pole) only the rate wrt to "pure" H→Zy is changed and we do not expect any other currently observable feature (with more data this may be reconsidered)

... and $H \rightarrow qq\gamma$

The Dalitz mode is active for all fermions According to arXiv:0704.3987v2 [hep-ph] approximate branching fraction ratios are: electron: muon: tau: u/d/s/c:b-4:2:1:5:0.2

I will not comment on consistency with latest (lepton mode) results but will just emphasize that quark contributions can be substantial (which may be of direct experimental interest too).

◆ Another point is related to the low-mass resonances: H→V γ with V = J/ ψ or Υ Very recent calculations by **Geoff Bodwin and Frank Petriello** * show the following (@8TeV)

$$BR_{direct} (H \to J/\psi \ \gamma) = 1.4 \times 10^{-7}$$

$$BR_{indirect} (H \to J/\psi \ \gamma) = 1.6 \times 10^{-5}$$

$$BR_{direct} (H \to Y \ \gamma) = 6 \times 10^{-7}$$

$$BR_{indirect} (H \to Y \ \gamma) = 1.4 \times 10^{-6}$$

direct production: proceeds through the HQQbar coupling *indirect production*: proceeds through $H \rightarrow \gamma^* \gamma$ with the subsequent transition $\gamma^* \rightarrow V$

$$\begin{aligned} \mathsf{BR}_{\mathsf{indirect}} & \ (\mathsf{H} \rightarrow \mathsf{J}/\psi(\mu\mu) \ \ \gamma) = 1.1 \ \mathsf{x} \ 10^{-6} \\ \mathsf{BR}_{\mathsf{cont}} & \ (\mathsf{H} \rightarrow \mu\mu\gamma) = 4.6 \ \mathsf{x} \ 10^{-7} \ \leftarrow \ \mathsf{in the \ limit \ of \ M} & \ (\mathsf{J}/\psi) - 0.1 \ \mathsf{GeV} < \mathsf{M}(\mu\mu) < \mathsf{M}(\mathsf{J}/\psi) + 0.1 \ \mathsf{GeV} \ ! \end{aligned}$$

• The J/ ψ contribution is not only sizable but the resonance peak should be visible over the continuum background –more relevant for 13/14 TeV running

^{*} A note is being written but I am allowed to distribute the preliminary results for the sake of discussions. In the meantime please contact Geoff and Frank if you are interested in details.