

$H \rightarrow ll \gamma$ at ATLAS

Aidan Randle-Conde, on behalf of the ATLAS Higgs Group

Processes for $H \rightarrow ll \gamma$

 \Box The Standard Model (SM) Higgs boson can decay to the $ll\gamma$ final state in several ways:

$H \rightarrow Z\gamma$	Dalitz decay	Radiative H →μμ
$\mathit{m}(\mathit{ll})$ close to Z pole	Small $m(ll)$	Wide range of $\mathit{m(ll)}$

- □ For more loop mediated examples see arXiv:1302.2159
- For existing analyses we would benefit from accurate estimates and simulation, including interference, of these processes

$H \rightarrow ll \gamma$ processes at ATLAS

- \Box At ATLAS there are several Higgs analyses where $H \rightarrow ll\gamma$ is a relevant process:
 - Resonant and non-resonant signal in the search for $H \rightarrow Z\gamma \rightarrow ll\gamma$ $(l=e,\mu)$
 - \blacksquare Final state radiation in the search for $H \rightarrow ll \ (l=\mu)$
 - Final state conversion in $H \rightarrow \gamma \gamma$
- □ The SM branching fractions for these processes are:

Process	$H \rightarrow Z(ll) \gamma$	<i>Η →μμ</i>	$H \rightarrow \gamma \gamma$
Branching fraction	1.0×10 ⁻⁴	2.2×10 ⁻⁴	2.3×10 ⁻³

- \square Comparable to the rare $B(H \rightarrow ZZ^* \rightarrow llll) = 1.2 \times 10^{-4}$
 - But with significantly larger backgrounds

$H \rightarrow Z(ll)\gamma$ search at ATLAS

4

 \square The selections for $H \rightarrow Z(ll)\gamma$ at ATLAS are:

	Electron	Muon	Photon
p_{T}	> 10 GeV	> 10 GeV	> 15 GeV
Pseudorapidity	$ \eta < 2.47$	$ \eta < 2.7$	$ \eta < 1.37$ or $1.52 < \eta < 2.37$
Track isolation	$p_{\mathrm{T}}^{\mathrm{iso}}/p_{\mathrm{T}} < 0.1$ $\mathrm{in} \ \Delta R < 0.2$	$p_{\mathrm{T}}^{\mathrm{iso}}/p_{\mathrm{T}} < 0.1$ in $\Delta R < 0.2$	
Calorimeter isolation	$p_{\mathrm{T}}^{\mathrm{iso}}/E_{\mathrm{T}} < 0.2$ in $\Delta R < 0.2$		$< 4 \text{ GeV in } \Delta R < 0.4$

- □ Trigger on single/double lepton triggers
- \blacksquare Choose Z candidate closest to Z pole (91.18 GeV)
- $lue{}$ Choose photon with highest p_{T}
- \blacksquare Require m(ll) > 81.18 GeV

$H \rightarrow Z(ll)\gamma$ search at ATLAS

Į

- □ Two choices of variable:
 - \blacksquare $m(ll\gamma)$: Sensitive to $H \rightarrow Z\gamma \rightarrow ll\gamma$, $H \rightarrow \gamma\gamma^* \rightarrow ll\gamma$ and $H \rightarrow \mu\mu^* \rightarrow \mu\mu\gamma$
 - $\triangle m = m(ll\gamma) m(ll)$: Only sensitive to $H \rightarrow Z\gamma \rightarrow ll\gamma$
- lacktriangle We use Δm as the discriminating variable
 - Width of Z boson is irreducible
- □ We are sensitive to $\sim 15 \times SM$ cross section at $m_H = 125 \text{ GeV}$
- lue Our signal Monte Carlo (MC) samples currently only contain $H o Z \gamma$
- □ Contribution from $H \rightarrow \mu \mu^* \rightarrow \mu \mu \gamma$ estimated to be <10% total signal

$H\rightarrow \mu\mu$ search at ATLAS

f

 \square The selections for $H \rightarrow \mu\mu$ at ATLAS are:

	Muon
Muons p_{T}, η	$p_{\rm T}$ > 25 GeV (leading muon), $p_{\rm T}$ >15 GeV (subleading muon), $ \eta $ < 2.5
$p_{\mathrm{T}}(\mu\mu)$	> 15GeV to suppress Drell-Yann backgrounds

- \square We define signal region as m(ll) > 105 GeV
- \square We are sensitive to ~10×SM cross section at m_H =125 GeV

$H \rightarrow \gamma \gamma$ at ATLAS

- 7
- \square Similar situation compared to $H \rightarrow Z\gamma$ analysis
- \square A fraction of the internal conversions $\gamma^* \rightarrow ff$ are picked up by the nominal analysis selection
- Efficiency largest for showers and conversions, albeit much smaller compared to on-shell photons
- This contribution is included in Pythia8 (below are indicative numbers for the fraction, efficiency and conversion fraction for a typical $H \rightarrow \gamma \gamma$ selection and standard generator settings)
- Not included in Pythia6

	Frac.	Effi.	Conv.	Y* ~ 1
Final State Photons	94.3%	41.3%	50.7%	
Conversions (e^+e^-)	2.2%	3.8%	97.3%	H/
Quarks and Other Leptons	3.2%	0.4%	62.0%	
Showers $(e+\gamma)$	0.4%	8.4%	98.7%	m
	A: al.a	no Danalla (Canala CAA	

Common issues and questions

- □ These three analyses are facing similar issues and questions with $H \rightarrow ll \gamma$:
 - We need MC samples that describe the processes well with interference terms
 - Which variables are going to be the most discriminating/most useful?
 - How should the following events be treated?:
 - Interference between $H \rightarrow Z\gamma \rightarrow \mu\mu\gamma$, $H \rightarrow \mu\mu^* \rightarrow \mu\mu\gamma$ near the Z pole
 - $\blacksquare H \rightarrow \mu\mu^* \rightarrow \mu\mu\gamma$ with soft photons
 - $H \rightarrow \gamma \gamma^* \rightarrow ll \gamma$ Dalitz decay events

Summary and outlook

- $\square H \rightarrow ll \gamma$ is an important final state for ATLAS searches:
 - \blacksquare Non-resonant signal in search for $H \rightarrow Z\gamma$
 - \blacksquare Final state correction to $H \rightarrow \mu\mu$
 - Final state conversion for $H \rightarrow \gamma \gamma$
- The various contributions interfere with each other, making estimation non-trivial
- We need well understood simulation of these processes
- There are open questions about how to treat and classify the events
- Feedback and input greatly appreciated

10

- $lue{}$ Illustrative m(ll) spectrum
- Higgs branching fraction uncertainties

Illustrative m(ll) spectrum

- □ In arXiv:1211.6058 [hep-ph] Gainer et al present a simulation of $H \rightarrow \mu\mu\gamma$ events
- lacksquare They provide the $m(\mu\mu)$ spectrum, which shows the various

Uncertainties in $B(H \rightarrow ll\gamma)$

 \square The theoretical uncertainties for $B(H \rightarrow ll\gamma)$ are:

Process	Uncertainty		
$gg \rightarrow H$	$15.3\% @ m_H = 110 \text{ GeV}$	$14.4\% @ m_H = 150 \text{ GeV}$	
Vector boson fusion $\rightarrow H$	$3.0\% @ m_H = 110 \text{ GeV}$	2.9% @ $m_H = 150 \text{ GeV}$	
$H \rightarrow Z\gamma \rightarrow ll\gamma$	$9.4\% @ m_H = 120 \text{ GeV}$	6.2% @ $m_H = 120 \text{ GeV}$	
$H \rightarrow \mu\mu$	$7.0\% @ m_H = 110 \text{ GeV}$	3.2% @ $m_H = 150 \text{ GeV}$	
$H \rightarrow \gamma \gamma$	5%		