Micromegas for the upgrade of the ATLAS muon chambers for the SLHC

P. lengo CERN PH-ADE/MU on behalf of

Arizona, Athens (U, NTU, Demokritos), Brookhaven, Bucharest, CERN, Harvard, Naples, Saclay, Seattle, U. of Science and Technology of China, South Carolina, St. Peterburg, Thessaloniki

https://twiki.cern.ch/twiki/bin/view/Atlas/MuonMicromegas

P. IENGO - MPGD Workshop 16-18 April 2008 NIKHEF

1

OUTLINE

- Introduction and motivation
- □ Goals of R&D activity
- Prototype construction
- Test beam 2007
- Status and plans
- □ Conclusions

The Upgrade of ATLAS

3

- LHC upgrade
 - \Box L_{SLHC}~ 10L_{LHC}
 - bunch crossing time: 50ns (25 ns)
- Critical regions in Atlas Spectrometer:
 - El layers:
 - CSC(27m²)
 - EIS/L1(54m²)
 - EIS/L2 (68m²)
 - **Ε** EM η>2: EMS/L1(85m²)

Micromegas as candidate technology

- 4
- Combine triggering and tracking functions
- Required performances:
 - **D** Spatial resolution \sim 100 um μ m (Θ_{track} <45 degr)
 - Good double track resolution
 - **Time resolution** \sim 5 ns
 - □ Efficiency > 98%
 - **\square** Rate capability > 5 kHz/cm²
- \square Potential for going to large areas $\sim 1 mx2m$

Prototype layout

5

- Board Layout (not to scale)
- 450mm x 350mm active area
- Different strip patterns (250, 500, 1000, 2000 µm pitch; 450mm and 225 mm long)
- Drift gap: 2-5 mm
- Two prototypes have been fabricated at CERN-TS/DEN on the same layout board

P. IENGO - MPGD Workshop 16-18 April 2008 NIKHEF

Prototype 1 (P1)

- Standard bulk Micromegas
- Homogeneous stainless steel mesh
- \Box 325 line/inch = 78 μ m pitch
- $\hfill\square$ Wire diameter ${\sim}25~\mu\text{m}$
- \square Amplification gap = 128 μ m

P. IENGO - MPGD Workshop 16-18 April 2008 NIKHEF

P1 assembling

Cathode mounting

Assembled chamber

Mechanical issues

P. IENGO - MPGD Workshop 16-18 April 2008 NIKHEF

2007 Test beam set up

- 180 GeV pions beam
- Scintillator trigger
- External tracking with four Si detector modules (Bonn Atlas Telescope) Independent DAQ synchronization problem
- □ Two non flammable gas mixtures: Ar:CF4 (90:10) Ar:Ne:CF4(45:45:10)
- Data acquired for 6 different strip patterns P. IENGO - MPGD Workshop 16-18 April 2008 NIKHEF

2007 Test beam set up

Sparks counting with mesh R/O via attenuator

A typical ADC spectra for 32 channels

Beam profiles

12

- Noise subtraction (from 12 presamples)
- Custer position with center of gravity

Beam profile with 1 mm pitch strips

Beam profile with 2 mm pitch strips

(Preliminary) Data Analysis

- 13
- Synchronization problem between Si tracker and Micromegas (DAQ of tracker lost some events per run) and among the different Si modules
- Hard to find a bunch of synchronized events for data analysis
- Some cross talk observed due to a long bundle of two not shielded cables from FEC to DAQ

Simple event display

Simple event display

(Preliminary) track resolution

- Extrapolation error
- 1mm strip pitch
- Ar:Ne:CF4 (45:45:10)
- $\Box \sigma$ global = 180 μ m

P. IENGO - MPGD Worksho

Some gain measurements

P. IENGO - MPGD Workshop 16-18 April 2008 NIKHEF

Electronic transparency

P. IENGO - MPGD Workshop 16-18 April 2008 NIKHEF

Prototype 2 (P2)

- Standard bulk Micromegas
- Unidirectional stainless steel/plastic mesh
- \square 200 line/inch = 127 μ m pitch
- \Box Wire diameter ~45 μ m
- \square Amplification gap = 128 μ m

HV + signal connection for segmented mesh (groups of 100 wires)

Attractive features and drawbacks

- Possibility to segment the mesh w/o introducing dead areas
- Capacitance reduction
- Second coordinate measurement
- Trigger on larger pitch
- ...but plastic wires inside the detector:
 - Charging up
 - Aging

P2 first (discouraging) indications

- Systematic studies still to be performed
- □ Gain very low compared to P1 (factor ~10 less)
- Indication of charge up
- Unstable behavior
- □ Some hints:
 - Mesh quality not excellent (large wire diameter, presence of numerous impurities)
 - **Geometry not optimal: wire pitch** \sim amplification gap
- Idea not abandoned yet, but many improvement and test are needed

Status and plan

22

- R&D activity approved by the Atlas Upgrade Office
- Test bank set-up at CERN (L. Ropelewski's lab) and now under development (gas infrastructure, DAQ)
- Some small (10x10 cm2) prototypes have been built with a 'low profile' mesh to be used for gas characterization, gain and energy resolution studies
- Three more test beam period foreseen this year (June, July, October)
 - Exploring several option for new electronics (Altro/DATE; custom chip from BNL; Elx for T2K; development at CERN of chip designed for MPGD)
 - Precise spatial and time resolution studies
 - Define the preferred strip pattern for our purposes
- Micromegas with resistive layer
- Chamber construction
 - □ Going from medium size to large size (~1mx2m)
 - Mesh segmentation (possible also with fully metallic mesh, with a 2mm wide dead zone)

Summary & conclusions

- With SLHC an upgrade of some Atlas Muon chambers is needed
- □ Micromegas is a good candidate
- Activity started in 2007
- Two 'small' prototypes designed and built
- Test beam on P1 with encouraging results
- Problems with P2 under study
- New test beam campaign in 2008
- R&D approved by Atlas Upgrade Office