University of Twente

InGrid: the integration of a grid onto a pixel anode by means of Wafer Post Processing technology

16 April 2008 Victor M. Blanco Carballo

Overview

- Our wafer post processing requirements
- Concept and materials requirements
- Fabrication process
- Advanced processing
- Conclusions

Wafer post processing

- Use microelectronics to add functionalities
- Chip still functional after process
 - -Temperature budget
 - -Plasma damage
 - -Stress
- Wafer level and chip level post-processing
- Suitable for Medipix, Timepix, Gosssipo, PSI-46...(general purpose process)

Integrated Micromegas

- Use the chip as electronics
- Perfect alignment holes to pixels
- No dead areas

Materials for the structures

- SU-8 negative photoresist for insulating pillars
 - Easy to define structures by lithography
 - Low temperature process (below 95 °C)
 - Suitable thickness range (2µm to 1mm)
 - Insulating as Kapton foil (3MV/cm)
 - Some radiation hardness data available
- Aluminum for conductive grid
 - Commonly used in microelectronics
 - Easy to deposit
 - Easy to pattern
 - Low residual stress

InGrid: Integrated Grid

1) Pixel enlargement

- Increase sensitive area for better charge collection
- Pixel enlargement done by lift-off

2) a-Si deposition (Neuchatel)

3µm a-Si

30µm a-Si

•For later steps a-Si topography seems not to limit lithography performance

3) SU-8 supporting structures

- •Pillars tipically ~50µm tall and 30µm diameter
- Sparsed according to the pitch of the chip

4)The integrated device

- -Chip+a-Si+grid supported by insullating pillars
- -Pillars in the middle of four pixels
- -Perfect alignment hole to pixel

Grid profile

~1µm variation in grid roughness

Low gain fluctuations due to mechanical imperfections

And the system is robust

- A scratch occurred during fabrication but system works
- -Several months working in Helium/Isobutane
- -Several months working in Argon/Isobutane

An homogeneous response

Nut image after ⁵⁵Fe irradiation

No Moire effect

Scratch in the grid

Single electron counting possible

- Charge spread over chip area
- •55Fe spectrum reconstructed from single electron counting and TOT mode

Electroplated grid

TwinGrid

And it works

- Voltage on top grid, middle grid floating
- Next step integrate on a chip with voltage on both electrodes

Triple grid

- Follow same fabrication scheme
- Lower electric field facing the chip in Twingrid and triple grid
 - -reduce spark risk? reduce a-Si thickness needed?
- Intentionally misaligned grids can reduce ion-back flow?

Conclusions

- Medipix/Timepix/Gossipo+a-Si+InGrid working
- Wafer and chip level processing possible
- Lot of freedom in the fabrication process
- GEM-like structures seem feasible

Special thanks to you and

- SC group (Tom, Arjen, Bijoy, Jurriaan, Joost, Jiwu, Sander, Cora)
- Mesa+ lab (Dominique, Hans)
- NIKHEF(Max, Martin, Yevgen, Jan, Joop, Harry, Fred)
- Philips (Eugene)
- NXP (Rob)
- STW

University of Twente

SU-8 radiation hardness

Mylar fluence of 7.5 10^{18} n cm² ~ dose 10^{6} – 10^{7} Gy

And they look great in 3D

2D tracks projections

University of Twente The Netherlands

