

Ion back flow reduction in GEM-like cascades operating in HpXe

João Veloso

H

Physics Department – University of Aveiro

J. dos Santos, F.Amaro Physics Department – University of Coimbra

A. Breskin, R.Chechik Weizmann Institute of Science, Israel

Motivation

HpXe and dual-phase based detectors or TPCs

- gamma-ray imaging
- neutrinoless double-beta decay
- -WIMPs

. . .

- require readout devices capable of:
 - operating at HpXe
 - reducing ion back flow to the conversion region

Ion backflow problems and needs

Positive ions produced in avalanches limit the detector performance and the electron multiplication gain:

- In GPMs, trigger secondary avalanches, which cause gain limitations and localization deterioration (critical in visible-sensitive GPMs).
- In TPCs, result in dynamic track distortions. This seriously affects the tracking properties of TPCs in high-multiplicity experiments.
- Needs for good performance:
 - GPMs # ions/primary electron ≤ 10 (10⁻⁵ IBF @ G=10⁶)
 - TPCs # ions/primary electron ≤ 1 (10⁻⁴ IBF @ G=10⁴)
 - Minimum gain for primary electrons ~ 10

MicroHole & Strip Plate (MHSP)

• Operation Principle

JFCA Veloso et al., RSI 71(2000)2371

MicroHole & Strip Plate (MHSP)

- This device provides:
 - High gains ~ 10⁴-10⁵
 - Fast charge collection 10 ns
 - High energy resolution 13.5% @ 5.9keV x-rays Xe
 - High rate capability > 0.5 MHz/mm²
 - Low ion back-flow to the conversion region
 - Low UV photon feedback
 - High pressure operation capability
 - 2-D intrinsic capability $-\sigma \sim 125 \mu m$ (with resistive line)

PACEM - a solution for IBF reduction

Photon-Assisted Cascaded Electron Multiplier

uses the light produced in the avalanche in the first element for signal amplification and transmission to the next cascade element, while a mesh is used to block both electrons and ions.

Photon-Assisted Cascaded Electron Multiplier (PACEM)

Operation principle

uses scintillation gases (noble, CF_4 , ...)

JFCA Veloso et al., JINST (2006) 1 P08003

Photon-Assisted Cascaded Electron Multiplier (PACEM)

First validation (pulse mode)

PACEM - a solution for IBF reduction

- PACEM (Xe CF_4 @ 1 bar) demonstrated
 - TPC conditions ~1 ion/pe => IBF \approx 10⁻⁴ @ G=10⁴ - GPM conditions ~10 ions/pe => IBF \approx 10⁻⁵ @ G=10⁶

-JFCA Veloso et al., NIMA 581 (2007) 261 -FD Amaro et al. Trans. Nucl. Science (in press)

MicroHole & Strip Plate (MHSP)

Good performance at high pressure:

- High gain for pure xenon
 - $1 \text{ bar} => G = 5 \times 10^4$
 - $5 \text{ bar} => \text{G} = 5 \times 10^2$

FD Amaro et al., JINST (2006) 1 P04003 A. Buzulutskov, NIMA 494 (2002) 148

Optical gains & grid efficiency – HpXe

Current Mode:

Csl photocathode + gas ~ 4% efficiency

No variation in the ions going to the drift region, with total gain Full efficiency of the blocking grid, G1

Optical Gains of ~ 10³ @ 1 bar ^ 30 @ 3.3 bar

Nikhef 16 – 18 of April 2007

IBF studies – HpXe

Reducing V_{CT} in V_{total} , further improvements are obtained

Optical gain versus V_{CT} and V_{AC}

PE extraction from CsI PCs in Xe-CF₄ mixtures

Simulation results from: J. Escada, PJBM Rachinhas, THVT Dias, et al., Conf. Rec. IEEE Nucl. Sci. Symposium, Honolulu, October 2007.

Optical gains – Xe-CF₄

- high optical gain achieved - good indications for Xe-CF₄ mixture operation

Operation conditions below optimum values

That

IBF studies – Xe-CF₄

~2 ions/primary electron for Xe with a small amount of CF_{4} IBF ≈ 2x10⁻⁴ @ Gain = 10⁴

optical gain - higher than pure Xe for the same charge gain

Conclusions

- HpXe operation
 - High optical gain, even @ Hp optical gain ~ 10³ for 1.0 bar optical gain ~ 30 for 3.3 bar
 - IBF in TPC conditions
 - ~2 ions/pe @ 3.3 bar => IBF ≈ **10**⁻⁴ @ G=10⁴

-Systematic studies are in course for IBF optimization and for higher pressure operation.

- Xe + CF₄ (not optimized)
 - high optical gain higher than pure Xe for the same charge gain
 - better IBF than pure Xe
 - good indications for Xe-CF₄ mixture operation
 => important to continue this study

better quality MHSPs will allow us to reach higher gains and IBF performance

Thanks for your attention

Backup Slides

Nikhef 16 – 18 of April 2007

2D-Imaging – single photon counting

Resistive line ~ 100Ω /strip

(See NS24-392, H. Natal da Luz et al.)

niversidade de aveiro

2D-Rp < 300 µm (FWHM) – full area

Count rate capability

less than 5% variation @ G = 104No visible variation@ G = 3000

Energy Resolution

@ G > 10⁴