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The neBEM Field Solver for MPGDs

Outline of the present tionOutline of the presentation

• Relevance of a field solver in detailed MPGD simulation
• Brief introduction to Boundary Element Method
• Brief introduction to ISLES library and neEBM solver• Brief introduction to ISLES library and neEBM solver
• Validation of the closed-form exact expressions used
• Important numerical aspects
• Problem solving relevant to MPGDs
• Aspects to be implemented and final remarks

We will try to illustrate both numerical and application aspects
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The neBEM Field Solver for MPGDs

A very brief tour
SINP Kolkata IndiaSINP, Kolkata, India

• An autonomous Institute under the Department of Atomic Energy, Government of India
• Named after the famous scientist Professor Meghnad Saha (Saha’s Ionization equation)

S ll i h d di i i / i b l i /• Small campus with around twenty divisions / sections belonging to ten groups / centers
• Approximately 125 students pursuing PhD, 150 faculties pursuing research and training, 300 

supporting staff helping the Institute to carry on
• Kolkata, beside the Hooghly river, is charming during October – March. Moreover, both the 

Himalayas and the Bay of Bengal are quite close!
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The neBEM Field Solver for MPGDs

The Field Solver is crucial at every stage
Isolated at presentIsolated, at present

• Field Solver – commercial FEM packages (e.g., 
MAXWELL)

• Particle interaction to charge induction – Garfield
framework

Ionization: energy loss through ionization of a 
particle crossing the gas and production of 
clusters - HEED
Drift and Diffusion: electron drift velocity andDrift and Diffusion: electron drift velocity and 
the longitudinal and transverse diffusion 
coefficients - MAGBOLTZ
Amplification: Townsend and attachment 
coefficients - IMONTE
Ch i d ti I l li ti fCharge induction: Involves application of 
Reciprocity theorem (Shockley-Ramo's theorem), 
Particle drift, charge sharing (pad response 
function - PRF) - GARFIELD

• Signal generation and acquisition - SPICEg g q

Almost all the parameters depend on the local electro-
static field. Thus, for modeling a dynamically changing 
system, a precise and efficient field solver should be
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The neBEM Field Solver for MPGDs

A Field Solver for MPGDsF f G
Expected features

• Variation of field over length scales of a GEM Typical dimensions g
micron to a meter needs to be precisely 
estimated

• Fields at arbitrary locations should be 
available on demand

GEM Typical dimensions
Electrodes  (5 μm thick)
Insulator  (50 μm thick)
Hole size D ~ 60 μm
Pitch  p ~ 140 μm
I d i 1 0 available on demand

• Intricate geometrical features – essential to 
use triangular elements, if needed

• Multiple dielectric devices

Induction gap: 1.0 mm, 
Transfer gap: 1.5 mm

• Nearly degenerate surfaces
• Space charge effects can be very significant
• Dynamic charging processes may be 

important

Micromegas dimensions
Mesh size: 50 μm
Micromesh sustained by
50 μm pillars important

• It may be necessary to calculate field for the 
same geometry, but with different electric 
configuration, repeatedly

μ p
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The neBEM Field Solver for MPGDs

A Solver of Laplace’s / Poisson’s equationA Solver of Laplace s / Poisson s equation
• Physical consequence of combining

A phenomenological law (inverse square laws, Fourier law in heat conduction, Darcy 
law in groundwater flow)law in groundwater flow)
Conservation law (heat energy conservation, mass conservation)

• Primary variable, P; material constant, m; Source, S

SPm =∇∇ ).(

Heat transfer: temperature thermal conductivity heat sourceHeat transfer: temperature, thermal conductivity, heat source
Electrostatics: potential, dielectric constant, charge density
Magnetostatics: potential, permeability, charge density
Groundwater flow: piezometric head permeability rechargeGroundwater flow: piezometric head, permeability, recharge
Ideal fluid flow: stream function, density, source
Torsion of members with constant cross-section: stress, shear modulus, angle of twist
Transverse deflection of elastic members: deflection, tension, transverse load
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The neBEM Field Solver for MPGDs

FEM / FDMBEM

Solve
SPm =∇∇ ).(

Nearly arbitrary 
geometry

Reduced dimension

Accurate for both 

Analytic
Flexible

Exact

potential and its 
gradient

x Complex numerics x Interpolation for non-
nodal pointsExact

Simple interpretation
x Numerical 
boundary layer
x Numerical and 
physical singularities

nodal points
x Numerical differentia-
tion for field gradient
x Difficulty in unbounded 
dx Restrictedphysical singularities domainsx Restricted

x 2D geometry
x Small set of geo-
metries
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The neBEM Field Solver for MPGDs

FEM
th t ti h i ?the automatic choice?

Handles arbitrary geometry 
using triangular surface / 
tetrahedral volume elements

Solves for potential at fixed nodal points 
distributed throughout the volume
Variation of potential from node to node

Multiple dielectric devices 
can be analyzed
Sparse matrices are 
generated resulting into very 

Variation of potential from node to node 
represented by low order polynomials
Fields are, thus, represented by even lower-
order polynomials
Results at arbitrary points not coincidingge e a e e u i g i o e y

efficient solution of the 
algebraic system of 
equations
Very impressive array of 

Results at arbitrary points, not coinciding 
with nodes, can be inaccurate
In regions of fast changing potential, and 
faster changing fields, estimates can oscillate 
and be unreliable.y p y

commercial products that are 
well documented and 
benchmarked
Huge user base

and be unreliable.
Geometrical features such as degenerate 
surfaces and extreme aspect ratios can be 
difficult to analyze
Space charge modeling can be very difficultSpace charge modeling can be very difficult
Repeated calculations can be very demanding 
in terms of computational resources
Far-field needs to be truncated using artificial 
boundary conditions
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The neBEM Field Solver for MPGDs

BEM
ibl did ta possible candidate

Solves for the charge density (or 
i il / i k / d bl /

Relatively complicated mathematics
similar source / sink / doublet / 
vortex) on the device surface
Both potential and field can be 
estimated using the charge density 
distribution nominally exact

Mathematical and physical 
singularities may occur
Former can be removed by resorting 
complicated mathematics and 
d ` l’ f ldistribution – nominally exact

Essentially Meshless – estimation of 
values at arbitrary locations in space 
is possible without necessitating 
interpolation / numerical

p
adopting `special’ formulations
The latter results into the infamous 
numerical boundary layer leading to 
unreliable near-field estimates

interpolation / numerical 
differentiation
Reduction of dimensionality – only 
the surface needs to be discretized
Arbitrary geometries can be analyzed

Densely populated matrices – some 
new and promising algorithms exist, 
though
Space charge problems can be 
diffi lt t d lArbitrary geometries can be analyzed 

by using triangular elements
Multiple dielectric devices can be 
studied
Far field is naturally satisfied

difficult to model
Less availability of commercial 
packages
Smaller user base
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The neBEM Field Solver for MPGDs

BEM Basics

Potential u at any point y in the domain V enclosed by a surface S is given by
Green’s identities Boundary Integral Equations

Potential u at any point y in the domain V enclosed by a surface S is given by

∫ ∫ ∫+−=
S S V

xdVxbyxUxdSxuyxQxdSxqyxUyu )()(),()()(),()()(),()(

where y is in V, u is the potential function, q = u , the normal derivative of u onwhere y is in V, u is the potential function, q  u,n, the normal derivative of u on 
the boundary, b(x) is the body source, y is the load point and x, the field point. U
and Q are fundamental solutions

U = (1/2π) ln(r) U = 1 / (4πr) Q = (1/2παrα) rU2D = (1/2π) ln(r), U3D = 1 / (4πr), Q = -(1/2παrα) r,n

α = 1 for 2D and 2 for 3D. Distance from y to x is r, ni denoted the 
components of the outward normal vector of the boundary.

2D C 3D C 0 0 02D Case 3D Case r = 0 r a 0, r≠ 0

ln(r) 1/r Weak singularity Nearly weak singularity

1/r 1/r2 Strong singularity Nearly strong singularity
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The neBEM Field Solver for MPGDs

Solution of 3D Poisson's Equation
using BEMusing BEM

• Numerical implementation of boundary integral equations (BIE) based on Green’s 
function by discretization of boundary.
Boundary elements endowed with distribution of sources doublets dipoles vortices• Boundary elements endowed with distribution of sources, doublets, dipoles, vortices.

′ 1
Electrostatics BIE Green’s function

SdrrrGr
S

′′′=Φ ∫ )(),()( ρ rr
rrG

′−
=′

πε4
1),(

i i i f di

Potential at r

[ ]{ } { }ΦρA

Charge density at r’
ε - permittivity of mediumdiscretization

Accuracy depends critically on the [ ]{ } { }Φ=ρA
y p y

estimation of [A], in turn, the 
integration of G, which involves 
singularities when r → r'.

Influence 
Coefficient 
Matrix

{ρ} = [A]-1{Φ}
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The neBEM Field Solver for MPGDs

Conventional BEM
Major Approximations Constant element approach

Conventional BEM

While computing the influences of     
th i l iti th i l iti

Singularities assumed to be concentrated 
at centroids of the elements, except for 
special cases such as self influence.the singularities, the singularities 

modeled by a sum of known basis 
functions with constant unknown 
coefficients.

special cases such as self influence.

Mathematical singularities can be removed: 
Sufficient to satisfy the boundary coeff c ents.

The strengths of the singularities  
solved depending upon the boundary 
conditions, modeled by shape 

y y
conditions at centroids of the elements. 

Difficulties in modeling 
physical singularities, y p

functions.
physical singularities

geometric singularity
boundary 
condition 
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Present Approachpp
Analytic expressions of potential and force field at any arbitrary location due to a 
uniform distribution of source on flat rectangular and triangular elements. Using 
these two types of elements, surfaces of  any 3D geometry can be discretized.e e o ype o e e e , u a e o a y geo e y a e i e i e

Restatement of the approximationspp
Singularities distributed uniformly on the surface of boundary elements 
Strength of the singularity changes from element to element.
Strengths of the singularities solved depending upon the boundary 

diti s d l d b th sh f ti sconditions, modeled by the shape functions

Foundation expressions are analytic and valid for the complete physical domain

ISLES library and neBEM Solver
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Contrast of approaches
nodal versus distributednodal versus distributed
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Foundation expressions of ISLES Inverse Square Law Exact SolutionsFoundation expressions of ISLES
Rectangular elements
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Value of multiple dependent on strength of 
source and other physical consideration

May need translation and vector rotation
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The neBEM Field Solver for MPGDs

Foundation expressions of ISLES

• Two parameters are important: 

Foundation expressions of ISLES
Triangular elements

precision and speed
• For the evaluation of accuracy, we 

have computed the influence at a 
i i b f h di i i hgiven point by further discretizing the 

triangular element into small 
rectangular and triangular elements

• Evaluation of speed has been carried• Evaluation of speed has been carried 
out using the Linux / UNIX system 
routine “gprof”

∫ ∫Φ
1 )(

)(
xz dxdzZYX ∫ ∫ −+−+−

=Φ
0 0

222 )()()(
),,(

zZyYxX
ZYX

Similar expressions as for rectangular 
elements but much longer

May need translation, vector rotation 
and simple scalar scaling
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Precision in flux computation
comparison with quadrature
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Q d t ith l th hi h t Quadrature with even the highest 
discretization fails!

Quadrature with only the highest 
discretization produces results 
comparable to ISLES
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Precision in flux computation
Comparison with multipole expansions

 1.8

 2
ISLES

Multipole

 3
ISLES

Multipole

 1

 1.2

 1.4

 1.6

 1.8 Multipole
100 X 100

10 X 10
Usual BEM

 1.5

 2

 2.5
Multipole

100 X 100
Usual BEM

 0.4

 0.6

 0.8

 1

 0.5

 1

 0.2
-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

 0
-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Comparison of flux along a line parallel 
to the Z axis passing through the

Comparison of flux along a diagonal 
i th h th b t

The quadrupole results are still far from precise

to the Z axis passing through the 
barycenter

passing through the barycenter
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Need for Speed!f p

• We carried out a small performance analysis
F ll i t bl fl t th i iti l i f ti hi h t b it i• Following table reflects the initial information which seems to be quite encouraging …

Element Evaluation Time Element Evaluation Time

Rectangular Exact 0.6 μs Triangular Exact 0.8 μs

Rectangular 1 by 1 25 ns Triangular 100 by 100 200 μs

Rectangular 10 by 10 2 μs Triangular 500 by 500 5 ms

So, for a prescribed accuracy, the gain in speed is enormous
This is especially true if near field computations are of interest

MPGD Workshop
17 Apr ’08, NIKHEF

S. Mukhopadhyay, N.Majumdar, 
S.Bhattacharya

This is especially true if near field computations are of interest



The neBEM Field Solver for MPGDs

Need for Speed
A closer study on errorsA closer study on errors

• Along diagonals, 5 by 5 discretization produces error less than 1% beyond 1 unitg g , y p y
• Along axes, the errors is less than 1% only if the distance is 3 units or more
• For far-field points (> 5 units), usual BEM should be used to minimize 

computational expenses
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Precision and SpeedPrecision and Speed
a detour on important numerical aspects

• To err is computational, unfortunately
Presence of singularities
Round-off errorsRound off errors
NaN, inf

• Approximation flags – a temporary measure!pp g p y

• Other Issues
Transcendental functions
Multi-valued functions
Complex vs. real functions
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Away from the realm of mathematicsAway from the realm of mathematics
Requirements for MPGDs

• A new set of closed-form exact solutions for precise estimation of potential and 
flux due to singularities (sources, sinks, doublets etc) uniformly distributed over 
rectangular and triangular elements has been found. These have evolved into a C 
library namely ISLESlibrary, namely ISLES

• Based on this library, the neBEM (nearly exact Boundary Element Method) solver 
has been developed to solve problems of interest in science and engineering

• Since Poisson's equation is one of the most important one in classical physics (an 
integral expression of the inverse square law and the laws of conservation) 
governing much of gravitation, electromagnetics, structural mechanics, ideal fluid g g g , g , ,
mechanics, Stoke’s flow, acoustics, optics and so on, these solutions can have vast 
applications.

• But what about problems related to MPGD simulation?
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Review
Expected features of A Field Solver for MPGDs

• Variation of field over length scales of a GEM Typical dimensions g
micron to a meter needs to be precisely 
estimated

• Fields at arbitrary locations should be 
available on demand

GEM Typical dimensions
Electrodes  (5 μm thick)
Insulator  (50 μm thick)
Hole size D ~ 60 μm
Pitch  p ~ 140 μm
I d i 1 0 available on demand

• Intricate geometrical features – essential to 
use triangular elements, if needed

• Multiple dielectric devices

Induction gap: 1.0 mm, 
Transfer gap: 1.5 mm

• Nearly degenerate surfaces
• Space charge effects can be very significant
• Dynamic charging processes may be 

important

Micromegas dimensions
Mesh size: 50 μm
Micromesh sustained by
50 μm pillars important

• It may be necessary to calculate field for the 
same geometry, but with different electric 
configuration, repeatedly

μ p
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Length scales
i iA micron in a meter

One of the major unsolved problems of

100

E t X Y Z NIMA 519 neBEM

One of the major unsolved problems of
electrostatics – A unit conducting cube
raised to unit volt

0

50 East
West

X Y Z NIMA 519
Potential

neBEM
Potential

0 0 0 0.999990 1.000001
0.4 0.5 0.5 0.9996 0.99943620

1st
Qtr

3rd
Qtr

North 0.45 0.5 0.5 0.99986 0.9995018
0.49 0.5 0.5 1.0013 0.9991151
0.499 0.5 0.5 1.0048 0.9987600Qtr Qtr

Charge density distribution at one of the corners

0.499 0.5 0.5 1.0048 0.9987600
0.4999 0.5 0.5 - 0.9974398
0.49999 0.5 0.5 - 0.995135
0 499999 0 5 0 5 - 0 9945964
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Arbitrary locations
V l h f bVery close to the wire of an Iarocci tube

 100

Axial deviation of normal electric 
field at the mid-plane of an Iarocci 
chamber with cross section 10mm ×

 10

d 
(k

V
/c

m
) X-sec = 10x10

2a = 50μm

λ = 10

Y = 35μm (10μm away from anode)

Garfield
NEBEM (polygon)

NEBEM (wire)

chamber with cross-section 10mm ×
10mm.

Two different models of wire have 
 1

N
or

m
al

 F
ie

ld
 ( λ = 10

Y = 2.5125mm

been considered
 1

-6 -4 -2  0  2  4  6

Y = 4.990mm (10μm away from cathode)

Despite the proximity of the top line to the wire surface, the normal electric field 
is found to be completely free from jaggedness or oscillations
Unfortunately, we do not have FEM packages (they are expensive!). Hence, it 

-6 -4 -2  0  2  4  6

Z (cm)
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y p g ( y p )
has not been possible for us  to compare results on this case
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Intricate geometriesg
The Micro Wire Detector

 200
neBEM

 120

 140

 160

 180

/c
m

)

neBEM
FEM

 40
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 100

E 
(k

V/
cm

 0

 20

-100  0  100  200  300  400  500  600  700

Y (μm)

Total electric field contours on the central plane Variation of total electric field along an axis

The MWD has an intricate design. In this case:
Drift plane 785μm from the anode strip at 1 11kV

p
across cathode and anode

g
passing through the mesh hole
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Drift plane 785μm from the anode strip at 1.11kV.
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Intricate geometries
hSharp corners

El t t ti f b th i d t h b ti t dElectrostatics of both  inner and outer corners have been estimated
It has been possible to estimate field to within 5% for a point within a micron of a convex 
corner 
For a concave corner, usable estimation could be made upto within 10 microns of 90o
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Triangular element
C h d i f i lCorner charge density of a unit square plate

Method Order of singularityg y

Numerical 
shooting

0.7034

Walk on spheres 0.7034

Surface charge 0.704

Ficehra’s theorem 0.7015

Walk on plane 0.7034

neBEM 0.7057 (triangular) 
0 7068 ( t l )

Variation of charge density with
Increasing distance from the corner
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0.7068 (rectangular)
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Multiple DielectricMultiple Dielectric
Complicated by the presence of degenerate surfaces

Ratio of dielectrics = 10
PresentDBEMFEMLocation

0.23983460.238010.23015756.5,12.0

0.52479030.521810.51448924.0,16.5

0.34512320.346380.363885522.5,6.0

0.10583570.106230.11086434.0,3.5

Please note that all the distances are in microns
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Please note that all the distances are in microns
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Multiple dielectric
i i l h bResistive plate chambers

 4.5

 5

Field at Y = 1.0mm in triple layer geometry

 7

 8
Analytic (1 layer)
neBEM (1 layer)

Analytic (3 layers)

 2.5

 3

 3.5

 4

 4.5

 (
V

/c
m

)

 4

 5

 6

Y
 (

V
/c

m
)

Analytic (3 layers)
neBEM (3 layers)
neBEM (7 layers)

 0.5

 1

 1.5

 2

 2.5

E
Y
 (

V

Analytic (3 strips)
neBEM (1 strip)

neBEM (3 strips)
neBEM (5 strips)
neBEM (7 strips)

 1

 2

 3

E
Y
 

 0
-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

X (cm)

 0
-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

X (cm)

Strip width: 3.0cm, Strip length: 50.0cm
h h

Layer-4,5 height: 200µm (~PET)
Layer 6 7 height: 20µm (~Graphite)Layer height: 2.0mm

Layer-3 permittivity (εr): 7.75 (~glass)
Layer-2 (middle) permittivity (εr): 
1.000513 (~Argon)

f l l d h l l

Layer-6,7 height: 20µm (~Graphite)
Layer-4,5 permittivity (εr): 3.0 
(~PET)
Layer-6,7 permittivity (εr): 12.0 
(~Graphite)
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Successful validation with Riegler et al. (~Graphite)
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Nearly degenerate surfacesy g f
Too many BEM formulations!

Thin plate neBEM neBEMEnhancedUsualh/L Thin plate
BEM

1.259038

neBEM  
(- sides)

2.3749612.39751.0

neBEM 
(+sides)

Enhanced
BEM

Usual
BEM

h/L
(for d/L 0.2)

1.3879

1.2351

1.392805

1.360813

1.6797101.74050.05

1.7571752.66313.35420.1

1.5744171.4752061.58741.66520.005

1.5611 1.455047 1.5906391.68990.01

1.6200

1.6094

1.539550

1.511291

1.5521900.000001

1.5581081.62210.001

MPGD Workshop
17 Apr ’08, NIKHEF

S. Mukhopadhyay, N.Majumdar, 
S.Bhattacharya

(1.5830)
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Repetitive estimations
Weighting field in RPCWeighting field in RPC

 3

 3.5

 4

 4.5

L3 L2 L1 M R1 R2 R3

 1

 1.5

 2

 2.5

 3

E
Y
 (

V
/c

m
)

-0.5

 0

 0.5

-15 -10 -5  0  5  10  15

X (cm)

Note that since the geometry of the problem remains unchanged

Schematic representation of the model RPC Plot of normal weighting field for all
The X-readout strips at the mid-section

Note that, since the geometry of the problem remains unchanged, 
the influence coefficient matrix needs to be created and inverted 
only once.
All the solutions involve just a matrix multiplication

MPGD Workshop
17 Apr ’08, NIKHEF

S. Mukhopadhyay, N.Majumdar, 
S.Bhattacharya

All the solutions involve just a matrix multiplication.
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Space charge
i l f ( )Particles on Surface (ParSue)

 5000

P and PApprox

Points
 10000

FY and FYApprox

Points
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 2000

 3000
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P
ot
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-10000

-5000
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Y(m)

Create two sets of surfaces within the relevant volume placed perpendicular to the average 
direction of the negative and positive particles in a given avalanche
Divide these surfaces into smaller elements
Attach each positive and negative particle to its nearest surface element
C t th lti f h d it h l t l fCompute the resulting surface charge density on each elemental surface
The effect of the particle distribution can now be computed as the combined effect of these 
surface elements 
More precise and more efficient variants of ParSue are being explored
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PARticles on SUrfacE (PARSUE) seems to be the new thing to pursue!!
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Gaps G p
and how to get rid of them

o The problem of dynamic charging has not been addressed.
o ParSue needs to be explored and integrated properlyo ParSue needs to be explored and integrated properly.

o Mesh generation has been implemented in a rather ad hoc manner; rigorous but 
user-friendly implementation is a necessity – should be related to the Geant4 
approach if possibleapproach, if possible.

o Minimum use of triangular elements (without losing on the precision front) needs 
to be ensured since the computation for triangular elements is considerably more 
than that for rectangular elements.

o Implementation of better algorithms to handle these huge and dense matrices can 
make wonders.

o Computational effort should be optimized – use of symmetry, adaptive mesh 
generation can help reducing the computational expenses by a significant amountgeneration can help reducing the computational expenses by a significant amount

o Parallel computation can help the overall detailed simulation

o Interfaces to Garfield and ROOT needs to be developed to integrate neBEM into 
the detailed detector simulation and Geant4 frameworks
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the detailed detector simulation and Geant4 frameworks.
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Final remarksFinal remarks
A lot needs to be done in future

A precise and efficient field solver neBEM based on theA precise and efficient field solver, neBEM, based on the 
ISELS library, has been introduced
It already has most of the major features necessary to carry 

t d t il d MPGD i l ti i l di bilit fout detailed MPGD simulation, including capability of 
simulating space charge
Improvements necessary to make it more appropriate to the p y pp p
detailed detector simulation framework seems straight-
forward but is likely to take some time
It can be easily provided as a toolkit to the developer / user soIt can be easily provided as a toolkit to the developer / user so 
that, in addition to detailed detector simulation,  it can be 
used for Geant4 and other simulation studies.
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