Micromegas for Rare Events: latests developments and plans

Igor G Irastorza Universidad de Zaragoza 1st RD51 Collaboration Workshop NIKHEF, Amsterdam, June-07

Rare Events and MPDGs

1st RD51 CM, NIKHEF, 18/04/08 Igor G. Irastorza (U. Zaragoza) 2

Dark Matter WIMPs:

- –Unique signal identification by "directionality"
- –nuclear **NEWAGE, DRIFT and MIMAC**

Axions from the Sun

- –Background suppression by topology
- –– New Micromegas for CAST at CERN

Double beta decay

- – Powerful topology signal identification & energy resolution
- – New initiative, NEXT, at Canfranc Underground Lab

The challenge of Rare Events

- $\overline{}$ Need for **large target masses**
- T. ■ Need for **very low background** → extrem radiopurity, shielding, event discrimination.
- \mathbb{R}^3 Need for **very good stability** of operation (very large exposures)
- $\overline{}$ **Simplicit y in** operation and construction is a bonus.
- **Low threshold** (for WIMPs and axions)
- **Good energy resolution** (for DB)

 \rightarrow extreme \parallel All these requirements add up to a formidable challenge

> +Construction & **Operation** underground

Latests advances in MPDGs, in particular, Micromegas, open the way to use gaseous detectors (TPCs) in Rare Event Searhces, facing these challenges without the traditional drawbacks of conventional TPCs.

Solar Axions

п Principle of detection (**axion helioscope**) [Sikivie, PRL 51 (87)]

AXION PHOTON CONVERSION

Solar axion flux [van Bibber PRD 39 (89)]

RODES

CERN Axion Solar Telescope (CAST)

- п **Decommissioned LHC test magnet (L=10m, B=9 T)**
- П **Moving platform ±8°V ±40°H (to allow up to 50 days / year of alignment)**
- п \blacksquare 4 magnet bores to look for X rays
- п **3 X rays detector prototypes being used.**
- Г **X ray Focusing System to increase signal/noise ratio.**

New detectors for CAST

- **E** At the sunset side, replace **CE I K SUNTISE RIM** conventional multiwire TPC.
- **At the sunrise side, replace** old un-shielded MM, with a more optimized design (very small space), able to accommodate shield and apossible X-ray focusing device.
- \blacksquare Higher efficiency.
- \blacksquare Lower background (shielding)
- \blacksquare Robustness

1st RD51 CM, NIKHEF,

New "sunrise" CAST Micromegas

New "sunrise" CAST Micromegas

New "sunset" CAST Micromegas

New "sunset" CAST Micromegas

 TPC shielding and setup adapted to the new detectors…

1st RD51 CM, NIKHEF,

The detectors: new design

Active zone ~ 35 cm2

- п Microbulk technology
- П \blacksquare 106 \times 106 strips, 0.5 mm pitch

 X-ray window

- п Compact construction to fit with shielding
- \blacksquare Very good energy resolution
- П Same mechanics for both sunset and sunrise

1st RD51 CM, NIKHEF,

Electronics cards212 channels

Microbulk manufacturing technique

- П Developed by Saclay/CERN (see Yannis'talk)
- п Manufactured at Rui's workshop at CERN
	- Better E resolution
	- Easier construction and manipulation
	- Robustness
- п \blacksquare First time this kind of detector is used an experiment.
- п Intense RD activity during 2007 to meet CAST schedule. Numerous manufacturing issues have been debugged.

1st RD51 CM, NIKHEF,

First data with new detectors

 \blacksquare Energy resolution: ■ @ 5.9 keV~13% FWHM ■ @ 8 keV~14% FWHM

1st RD51 CM, NIKHEF,

Neutrinoless Double Beta (0νββ)

$\rho \propto \beta \beta$ decay is relevant when the nucleus cannot decay β .

¾

- \checkmark With emission of 2 v (2νββ). Standard process, observed in a number of isotopes.
- \checkmark With no neutrino (0νββ). massive and Majorana. Not yet seen(*).

e- ^ν *e-* ^ν

 Precious information on neutrino properties (mass scale, ββ

Majorana/Dirac nature,...)

Neutrinoless Double Beta (0νββ)

■ "Visible \blacksquare "Visible" energy (i.e. the 2 e \cdot) spectrum:

Neutrino mass scale and 0νββ

Current generation $\beta\beta$ experiments Source = target ■ Source ≠ target

 \bullet Good E resolution \bullet Good scaling-up •BUT, modest background discri. \rightarrow strong requirements on radiopurity and shielding

•Event topology information •BUT, moderate energy resolution and difficult scaling up

1st RD51 CM, NIKHEF, 18/04/08 Igor G. Irastorza (U. Zaragoza) 17

Gas Xe TPCs for ββ ?

Are they competitive in the race towards ton or multiton scale exp's?

Gas TPCs offer in principle the advantages of both previ approaches: topological signature & scaling-up

■ But also:

- Xe easy to enrich
- No long lived isotope to activate
- Very weak 2νββ mode (still to be
measured!)
- Single homogeneus medium (no
surfaces/boundaries)
- Ba++ taging, as proposed by EXO and a same series of the same (R&D needed) and a same series of $\overline{\text{B70 keV e}}$ in the

MUNU TPC

The role of E resolution @ the ton scale

1st RD51 CM, NIKHEF, 18/04/08 Igor G. Irastorza (U. Zaragoza) 19

The topological signature

- A gas TPC have access to the $^{\prime\prime}$ of the event.
- p. 1 e⁻ events and 2 e⁻ events have different topologies. This can be
used to reject gamma
background (1 e⁻)
- p. Gothard demostrated that this can be done. They achieved a
96.5% efficiency in rejecting single e⁻ events. We may do better.
- **A gas TPC would have an extra handle to reduce background by a factor of at least 102 (most probably more?)**.

1st RD51 CM, NIKHEF, 18/04/08 Igor G. Irastorza (U. Zaragoza) 20

High energy resolution in Micromegas: ongoing tests

- п **Measurement of E resolution at high** energies:
	- High pressure Ar+Isob small setup, read by new generation Micromegas readout (microbulk) non-pixelized anode
- П Mixtures testes: $Ar + Iso 2\%$, $Ar + Iso 5\%$
- × Pressures tested: from 1 to 5 bar

 \blacksquare Readouts used first tested at low energy and atmosferic P \blacksquare 11% FWHM at 5.9 keV ($55Fe$ peak)

- **Energy resolution tested with Am 5.5 MeV**
Am alphas source (5.5 MeV) Am alphas source (5.5 MeV) П Best resolution obtained: **1.5 – 2 % (FWHM)** in a wide range of (mesh and drift V, \dot{P} , etc...) **The asymmetry of the peak** may indicate the presence of external effects (electrostatics, recombination, attachment, etc…) and that intrinsic limits are better. **Landau deconvolution analysis**
	- indicate possible intrinsic Micromegas energy resolution **0.7 % FWHM** .

1st RD51 CM, NIKHEF,

Gain & resolution *plateau*

1st RD51 CM, NIKHEF,

Energy resolution: next steps

- \blacksquare First priority: **same measurement in Xenon** Hellaz TPC **in**
- **Setup being upgraded for** such measurement in Saclay
— hetter control of purity:
	- better control of purity:
filtering, leaktighness,
recirculation,...
	- Similar gas setup being built at Zaragoza for further R&D.
- \blacksquare Measurement expected to be done in the coming
weeks.

1st RD51 CM, NIKHEF,

New proposed experiment: NEXT

- **EXECUTE:** A new initiative to build a **Neutrino E**xperiment with a gas **X**e **T**PC for double beta decay
- Groups involved: Barcelona, Berkeley, Saclay, Valencia, Zaragoza,…
- More collaborators are wellcome!
- Letter of Intent submitted to Canfranc Lab. Well received by the committee
- Good funding prospects.
- 1. Have all advantages of ^a Xe monolithic detector (like EXO)
- 2.Outdo Liquid Xe by getting topological info
- 3. Override tradicional limitation of gas TPCs (Gothard) by applying the latest developments on TPC readouts
- 4.Be a competitive option for the next (ton scale) generation of experiments

1st RD51 CM, NIKHEF, 18/04/08 Igor G. Irastorza (U. Zaragoza) 26

NEXT

A sensitivity down to 60 eV (for NEXT-100) and 20 eV (for NEXT-1000) is ^a priori reachable:

Of course, IF

- **Low enough resolution is**

achieved (~1% FWHM) $\qquad \qquad \qquad$ 10
- Low enough backgroung after topology cuts (i.e. not background limited)
- We believe this is possible after last developments on TPC
- **Example 3 Of course, a dedicated** R&D is needed now to demonstrate these issues (as well as other technical ones)

1st RD51 CM, NIKHEF, 18/04/08 Igor G. Irastorza (U. Zaragoza) 27

NEXT R&D

- **Energy resolution and gas mixture**
	- Demonstrate in Xe
	- Role of quencher. Compromise with scintillation signal.
- \mathbb{R}^n \blacksquare T0 measurement (UV light) \blacksquare
- Software: simulations
	- Best use of topology information
	- Backgrounds
- **Mechanics (high P issues)** $\mathcal{L}_{\mathcal{A}}$
- $\mathcal{C}^{\mathcal{A}}$ Background
	- Needed radiopurity measurement program
	- Needed shielding? Active/pasive? Selfshielding?
- **Readout type and design**
	- Which is best for NEXT?
	- $-$ Implications to radiopurity

Possible NEXT roadmap

1st RD51 CM, NIKHEF,

Conclusions

- П Latest MPDG developments offer rich perspectives to Rare Event Searches. They override typical limitations of coventional TPCs.
- \blacksquare Micromegas in particular are actively developed and a number of initiatives in the RE field are in course or foreseen to use them.
- CAST is commissioning 3 new MM detectors, validating novel manufacturing
techniques in a real experiment.
- п Dedicated measurements of high energy resolution on Micromegas are giving very interesting results for their application to double beta decay experiments.
- . A new initiative has born, NEXT to build a gas Xe TPC for double beta decay at Canfranc Lab.
- п **Rare Events have specific development needs from MPDGs. RD51 perfect tool to accomodate such development**

Backup slides

Detection of Dark Matter WIMPs

Detection of Dark Matter WIMPs

WINP

nuclear recoil

 \blacksquare **Present leading** experiments record the E deposit and discriminatebetween electron/nuclea r recoils. **If a WIMP is** detected, it will

show on the state of the state o
State of the state o

1st RD51 CM, NIKHEF,

But can the direction of the recoil be measured?

■ Very hard technological challenge...

- П \blacksquare In solids/liquids only 100 nm, so we go to gas...
- Some examples of n.r. tracks in gas:

International network on directionality: CYGNUS

- **CYGNUS:** *CosmoloGY with* NUclear recoilS
- **DRIFT coll, Grenoble, Saclay,** Zaragoza…
- **Slightly different approaches,** but common interest in MPDG.
- **NEWAGE experiment in Japan** already using MPDGs (microdot)
- **DRIFT and MIMAC** experiments plan to use **Micromegas**

Micromegas: latest developments

Why TPCs are not being used for RE?

Events in gas: traditional limitations of TPCs read by wires

- TPCs are usually developed for tracking purposes, not for calorimetry.
- **Bad energy resolution**
	- Intrinsically (lower n of pairs that, e.g., semiconductor detector)
	- By readout effects: sum up many wires, signal extended in time, charge
effects?,...
- **Detector with "gain".**
	- Gain very dependent on external parameters (geometrical Gain very dependent on external parameters (geometrical
imperfections, environmental par. P & T, gas purity)
	- Need extreme control of these parameters over time and space (if you are doing calorimetry)
- **Extended events, homogeneity is an issue.**
- Complex detectors: Mechanically (wire tension), Electrostatically (E field under control over large V), Acquisition (complex electronics, soft & analysis).
- \blacksquare Wires cannot be deployed with pitches $<$ 1-2 mm
- \blacksquare It is gas! Large volumes needed for rare events searches.

1st RD51 CM, NIKHEF,

Dark Matter WIMPs detection

WIMP

1st RD51 CM, Nikher, N

• 23% of the Universe is Dark galactic halo \ \ Matter (comological observations) • Galactic evidence: rotation curves of galaxies

• Cannot be baryonic matter. Ca<mark>nnot be</mark>\neutrinos

• Beyond standard model: WIMPs or/axions.

• WIMP galactic halo \rightarrow it could be detected directly in underground laboratories…

WIMP "wind"

WIMP detection

232 Km/s
232 Effect looked for at laboratory: Elastic dispersion of WIMPs WINE with nuclei of detector

nuclear

recoil

18/04/08 Igor G. Igor

WIMP detection **Expected signal:**

-
-

1st RD51 CM, NIKHEF,

Requirements:

- Very high spatial resolution **[~] ⁹⁰⁰**μ**^m** gaseous detector
	- \blacksquare 3D imaging capabilities
- 100 keV Ar recoiling **in Ar(20%)/He(80%) gas in Ar(20%)/He(80%)** gas

Medipix + Micromegas

But also, the ability to instrument large surfaces/ volumes of detector

imagine a nucleus recoiling here

1st RD51 CM, NIKHEF,

WIMPs with Micromegas in Zaragoza/Canfranc

Latest advances show that:

- $\mathcal{L}_{\mathcal{A}}$ Required granularity is achievable
- $\mathcal{L}_{\mathcal{A}}$ Large surfaces are posible to instrument easily.

Ongoing project to:

- $\mathcal{L}_{\mathcal{A}}$ Detailed simulation of nuclear recoils in gas:
	- Assess methods to extract directional info.
	- **-** Discrimination by topology
- $\mathcal{L}_{\mathcal{A}}$ Assess low background issues. Apply low background know-how to adapt MM manufacturing process. (radiopurity meas., etc...)
- $\mathcal{L}_{\mathcal{A}}$ Assess technical issues of MM operating undergroung \rightarrow First prototype (CAST replica) already taking data in Canfranc !
- $\mathcal{L}_{\mathcal{A}}$ Further: measure quenching factor and directional calibration calibration.

First MM in Canfranc ! First underground data being taken.

 $\frac{1}{1}$ st RD51 CM, NIRHEF,

1900 G. Irastorza (U. Zaragoza) 1900 - 1900 B. Irastorza (U. Zaragoza) 44

1st RD51 CM, NIKHEF,

EX-ray focusing optics

- Being build at Livermore • "Concentrator" approach, i.e., one reflection (improves efficiency)
- \bullet 14 nested conical shells
- Each shell is 125 mm long
- Iridium coating

Why MMs **should** be used for RE?

Most traditional limitations of TPCs are overriden by recent developemnts

- \blacksquare No **mechanical challenge**. Standard PCB technology replaces plane of wires. **Spatial resolution** achievable much higher.
-
- **Manufacturing process of large surfaces/volumes is** much simpler, and cheaper.
- **Robustness**
- п Impact on electronics (more freedom in readout design)

And specially: d specially:
d specially:

- r. **Energy resolution** close to the Fano limit
- **Stability and homogeneity** enhanced by special repeading the special compensation close to the Fano limit
 Stability and homogeneity enhanced by special

compensating effect. **. SMILE AND SMILE**

1st RD51 CM, NIKHEF,

High granularity

Gain compensating effect

$$
G=e^{\alpha d}\qquad \frac{\alpha}{p}=Ae^{-Bp/E}=Ae^{-Bpd/V}
$$

$$
\delta G/G = apd(1 - Bpd/V) = apd(1 - Bp/E)
$$

For *d ~ V/Bp* gain variations are minimized

> This distance corresponds to 30-100 microns for typical MM mesh voltages

1st RD51 CM, NIKHEF,

Gain compensating effect

1st RD51 CM, NIKHEF,

stability on time

GainStability

Gain evolution in 7 months almost continuous operation: well below $\pm 5\%$ Excellent for gaseous detector

1st RD51 CM, NIKHEF,

MM energy resolution

MM is the micropattern e tec tor with bes resolution. Reasons inherent to the avalanche process in MM:

- Spatial homogeneity of gain
- Minimal loss of charge
before avalanche
- Avalanche is produced mostly in same E (transition from drift to multiplication t)
- Ions are evacuated fast and efficiently. Charge effects

1st RD51 CM, NIKHEF,

One more example: П **CAST T detector** recently built…

1st RD51 CM, NIKHEF,

Gas Xe TPCs for ββ?

- \blacksquare Not presently comtemplated in present projects (EXO: liquid TPC) **Why?:**
	- Energy resolution: Fano factor, gain stability
	- $-$ homogeneity, equalization, ballistic deficit,…
	- Complex detectors. Specially for large V needed.

п PLB 434 (98) 407

- **180 l** @ **⁵ bar ³ ³ kg** Xe136 = **3.3** ٠
- п
- ٠
- ш
- \Box $\top_{1/2}$ ^{0v} > 4.4 x 10²³ years

Liquid vs. Gas

-
-
- No single e- identification \rightarrow poor background rejection
- R&D for Ba ion tagging in progress $(136Xe \rightarrow 136Ba++ + 2e-)$

Ba tagging can be done better in gas

Final results of last summer tests in Argon:

– High pressure (up to 5 bar) Ar+Isob small –setup, read by Micromegas (microbulk) non- $\overline{\omega}$ pixelized anode:

1st RD51 CM, NIKHEF,

Micropattern detectors

seminal idea is atributed to Oed (88)

Energy resolution in Micromegas

Setup at Saclay:

1st RD51 CM, NIKHEF, 18/04/08

Igor G. Irastorza

Software simulations

- **Active work on** simulation has started:
- \blacksquare ββ events in Xenon.
- п background events.
- п Pattern recognition (2 blobs)
- п Background sources and background level.

r.

…

First mechanical designs

- \blacksquare Prototypes like this one will be specifically built for NEXT
- \blacksquare Design under progress
- **Flexible design to** accommodate different readouts

1st RD51 CM, NIKHEF, 18/04/08 Igor G. Irastorza (U. Zaragoza) 63

10x10 cm2 cut out

• Present background dominated by fluorescence

1st RD51 CM, NIKHEF, 18/04/08 Igor G. Irastorza (U. Zaragoza) 64