Physics at run 2 The ultimate search engine: LHC Jorgen Beck Hansen / NBI On behalf of the LHC experiments Credits to many colleagues from CMS, ATLAS etc. for the compilation and the many studies as presented in ECFA, Snowmass, RLIUP,... #### What Do we know? - Consolidated the Standard Model - Immense set of measurements at 7-8 TeV - Precision measurements in EW and QCD - Rare processes, very sensitive to New Physics, like $B_s \rightarrow \mu\mu$ decay) - Completed the Standard Model: Higgs boson discovery - ~5 σ from each of H $\rightarrow \gamma\gamma$, H \rightarrow IvIv and H \rightarrow 41 per experiment - ~3 σ from H→ττ and ~3 σ from W/ZH→W/Zbb per experiment - Potential separation 0+/2+ and pure 0+/0- at 4σ level by combination? - Some couplings to 20-30 % # Supersymmetry searches ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS ATLAS Status: SUSY 2013 **ATLAS** Preliminary $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$ | | Model | e, μ, τ, γ | Jets | E _T ^{miss} | ∫£ dt[fb | Mass limit | Reference | |---|---|---|---|---|--|--|---| | Inclusive Searches | MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow \tilde{q}\tilde{\chi}^0_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}^0_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}^0_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}^0_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ellr/\nur)\tilde{\chi}^0_1$ GMSB $(\tilde{\ell}, NLSP)$ GGMSB $(\tilde{\ell}, NLSP)$ GGM (bino NLSP) GGM (wino NLSP) GGM (migsino-bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) | $\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$ | 2-6 jets
3-6 jets
7-10 jets
2-6 jets
2-6 jets
3-6 jets
0-3 jets
2-4 jets
0-2 jets
1 <i>b</i>
0-3 jets
mono-jet | Yes | 20.3
20.3
20.3
20.3
20.3
20.3
20.3
4.7
20.7
4.8
4.8
5.8
10.5 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-069 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152 | | 3 rd gen.
ĝ med. | $\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$ | 0
0
0-1 <i>e</i> , <i>μ</i>
0-1 <i>e</i> , <i>μ</i> | 3 <i>b</i>
7-10 jets
3 <i>b</i>
3 <i>b</i> | Yes
Yes
Yes
Yes | 20.1
20.3
20.1
20.1 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | ATLAS-CONF-2013-061
1308.1841
ATLAS-CONF-2013-061
ATLAS-CONF-2013-061 | | 3 rd gen. squarks
direct production | $\begin{array}{l} \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to t \tilde{\chi}_1^- \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to t \tilde{\chi}_1^- \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to t \tilde{\chi}_1^- \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to b \tilde{\chi}_1^+ \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to b \tilde{\chi}_1^+ \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to b \tilde{b}_1^+ \tilde{b}_2 \tilde{b}_2, \ \tilde{b}_2 \to \tilde{b}_1 + Z \end{array}$ | $\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | 2 b
0-3 b
1-2 b
0-2 jets
2 jets
2 b
1 b
2 b
ono-jet/c-t
1 b
1 b | Yes | 20.1
20.7
4.7
20.3
20.3
20.1
20.7
20.5
20.3
20.7
20.7 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 | | EW direct | $ \begin{split} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell} \! \to \! \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+\tilde{\chi}_1^-,\tilde{\chi}_1^+ \! \to \! \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_1^+\tilde{\chi}_1^-,\tilde{\chi}_1^+ \! \to \! \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_1^+\tilde{\chi}_1^-,\tilde{\chi}_1^+ \! \to \! \tilde{\tau}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_1^+\tilde{\chi}_2^0 \! \to \! \ell_1^-\nu\ell_1^-\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_L\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_1^+\tilde{\chi}_2^0 \! \to \! W\tilde{\chi}_1^0Z\tilde{\ell}_0^0 \\ \tilde{\chi}_1^+\tilde{\chi}_2^0 \! \to \! W\tilde{\chi}_1^0Z\tilde{\ell}_0^0 \end{split} $ | 2 e, μ
2 e, μ
2 τ
3 e, μ
3 e, μ
1 e, μ | 0
0
-
0
0
2 <i>b</i> | Yes
Yes
Yes
Yes
Yes
Yes | 20.3
20.3
20.7
20.7
20.7
20.3 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | ATLAS-CONF-2013-049
ATLAS-CONF-2013-049
ATLAS-CONF-2013-028
ATLAS-CONF-2013-035
ATLAS-CONF-2013-035
ATLAS-CONF-2013-093 | | Long-lived particles | Direct $\tilde{\chi}_1^+\tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(\tilde{e}, \tau($ | 0 | 1 jet
1-5 jets
-
- | Yes
Yes
-
Yes | 20.3
22.9
15.9
4.7
20.3 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ATLAS-CONF-2013-069
ATLAS-CONF-2013-057
ATLAS-CONF-2013-058
1304.6310
ATLAS-CONF-2013-092 | | RPV | $ \begin{array}{l} LFV \ pp \!\!\to \!$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -
7 jets
-
-
-
6-7 jets
0-3 <i>b</i> | Yes
Yes
Yes
Yes | 4.6
4.6
4.7
20.7
20.7
20.3
20.7 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1212.1272
1212.1272
ATLAS-CONF-2012-140
ATLAS-CONF-2013-036
ATLAS-CONF-2013-036
ATLAS-CONF-2013-091
ATLAS-CONF-2013-007 | | Other | Scalar gluon pair, sgluon $\rightarrow q\bar{q}$
Scalar gluon pair, sgluon $\rightarrow t\bar{t}$
WIMP interaction (D5, Dirac χ)
$\sqrt{s} = 7 \text{ TeV}$ | $ \begin{array}{c} 0\\2 e, \mu \text{ (SS)}\\0\end{array} $ $ \sqrt{s} = 8 \text{ TeV} $ | 4 jets 1 b mono-jet $\sqrt{s} =$ | Yes
Yes
Yes | 4.6
14.3
10.5 | sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 800 GeV M* scale 704 GeV m(χ) <80 GeV, limit of <687 GeV for D8 | 1210.4826
ATLAS-CONF-2013-051
ATLAS-CONF-2012-147 | | | full data p | artial data | full | data | | Mass scale [TeV] | | ^{*}Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty. #### Exotic searches Similar results from ATLAS #### The Standard Model is here to STAY!!! • NO evidence or minute indication of any new physics (~1++ Tev): - A Higgs mass of ~126 GeV indicates a potential New Physics scale at 9 TeV - Optimistic? It could be higher w/o problems - Fine tuning requirements points to 2 TeV (10%) increasing to 9 TeV (1%) (arxiv 0003170v1) ### Physics landscape by 2015 - The Puzzle: The SM is not the ultimate theory of particle physics, because of the many outstanding questions - Why is the Higgs boson so light ("naturalness"/fine-tuning/ hierarchy problem)? - What is the the nature of the dark part (96%!) of the universe? - What is the origin of the matter-antimatter asymmetry? - Why is gravity so weak? - The expected integrated luminosity of RUN 2 implies - If New Physics exists at the TeV scale its discovery at √s ~ 14 TeV happens in 2015++ → it requires a lot of luminosity Run 2 of the LHC will be marked by precision studies and search for small signals "Prediction is very difficult, especially about the future" #### LHC Roadmap Run 2 3 years Operation Run after LS1 #### LS 1 from 16th Feb. 2013 to Dec. 2014 #### LHC Roadmap Run 2 - Energy: 6.5 TeV - Bunch spacing: 25 ns - pile-up considerations - Injectors potentially able to offer nominal intensity with even lower emittance Run 2: Start with 6.5 TeV and later decision towards 7 TeV according to magnet training | | Number
of
bunches | Ib
LHC FT
[1e11] | Emit
LHC
[um] | Peak Lumi
[cm- ² s ⁻¹] | ~Pile-up | Int. Lumi
per year
[fb ⁻¹] | |---------------|-------------------------|------------------------|---------------------|--|----------|--| | 25 ns
BCMS | 2590 | 1.15 | 1.9 | 1.7e34 | 49 | ~45 | ## Luminosity evolution Still uncertainty on length of end-of-year breaks Usual caveats apply ## LHC Roadmap ## Detector upgrades • Detectors will need to be improved to be able to maintain performance at Run 2 - •4th Si Pixel layer (IBL) - •Complete muon coverage - •Repairs (TRT, LAr and Tile) - •New beampipe and Infrastructure updates - •Complete muon coverage - Cooler tracker - Photodetectors in HCAL - •New beampipe and infrastructure updates High statistics HI measurements using rare probe particles at low pT. 10nb-1, min bias Single phase major upgrade to detector & readout in LS2 Record very high stats to search for effect of possible new physics on flavour structure. (complementary to ATLAS & CMS progr) 50fb-1, 40Mz readout Single phase major upgrade to detector & readout in LS2 #### Parton luminosities - Looking at these in detail gives excellent idea about relative power of LHC14 vs LHC8, i.e. - How much luminosity is needed for process X at LHC14 to supersede the LHC8? - Rule of thumb: x10 in luminosity $\sim x2$ in energy (process dependent) - Plots from C. Quigg: LHC Physics Potential versus Energy, arXiv: 1101.3201 Physics prospects at Run 2 - Increase of cross sections from LHC8 to LHC14 - Improved discovery potential at LHC - A Higgs factory: - 5.5M Higgs events produced 100K event useful for precision measurements - Note: today ATLAS+CMS have 1400 Higgs events #### Physics subjects - Higgs precision measurement - Mass - Cross-sections - Measure as many Higgs couplings to fermions and bosons as precisely as possible - Very weak possibility to observe that the Higgs boson fixes the SM problems with $W_{\rm L}W_{\rm L}$ scattering at high E - Extend limits for searches CMS and ATLAS white papers: arXiv:1307.7135 and 1307.7292 ## Higgs Physics Potential - Mass High resolution channel $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ #### ATLAS 115 GeV < m41 < 125 GeV | | total signal | signal | $ZZ^{(*)}$ | $Z + jets, t\bar{t}$ | S/B | expected | observed | |--------|-----------------|---------------|---------------|----------------------|-----|----------------|----------| | | full mass range | | | | | | | | 4μ | 6.8 ± 0.8 | 6.3 ± 0.8 | 2.8 ± 0.1 | 0.55 ± 0.15 | 1.9 | 9.6 ± 1.0 | 13 | | 2µ2e | 3.4 ± 0.5 | 3.0 ± 0.4 | 1.4 ± 0.1 | 1.56 ± 0.33 | 1.0 | 6.0 ± 0.8 | 5 | | 2e2µ | 4.7 ± 0.6 | 4.0 ± 0.5 | 2.1 ± 0.1 | 0.55 ± 0.17 | 1.5 | 6.6 ± 0.8 | 8 | | 4e | 32.05 | 2.6 ± 0.4 | 1.2 ± 0.1 | 1.11 ± 0.28 | 1.1 | 4.9 ± 0.8 | 6 | | total | 18.2 ± 2.4 | 5.9 ± 2.1 | 7.4 ± 0.4 | 3.74 ± 0.93 | 1.4 | 27.1 ± 3.4 | 32 | #### CMS 110 GeV $< m_{4l} < 160$ GeV | Channel | 4e | 4μ | 2e2µ | 4ℓ | |-------------------------|---------------|----------------|----------------|-----------| | ZZ background | 6.6 ± 0.8 | 13.8 ±1.0 | 18.1 ±1.3 | 38.5 ±1.8 | | Z+X | 2.5 ± 1.0 | 1.6 ± 0.6 | 4.0 ± 1.6 | 8.1 ±2.0 | | All background expected | 9.1 ± 1.3 | 15.4 ± 1.2 | 22.0 ± 2.0 | 465 + 27 | | $m_H = 125 \text{ GeV}$ | 3.5 ± 0.5 | 6.8 ± 0.8 | 8.9 ± 1.0 | 19.2 ±1.4 | | $m_H = 126 \text{ GeV}$ | 3.9 ± 0.6 | 7.4 ± 0.9 | 9.8 ±1.1 | 21.1 ±1.0 | | Observed | 16 | 23 | 32 | 71 | Δm of 150(100) MeV achievable for 100(300) fb-1 #### Higgs Precision measurements | m _н = 125 GeV | | | | |--------------------------|-------------|-----------------------|-------------| | Process | Diagram | Cross
section [fb] | Unc.
[%] | | gluon-gluon
fusion | 000000 | 19520 | 15 | | vector boson
fusion | e WZ H | 1578 | 3 | | WH | WIT IS WIT | 697 | 4 | | ZH | abar Z | 394 | 5 | | ttH | 1000000 kap | 130 | 15 | | m _H = 125 GeV | | | | |--------------------------|--------|----------|--| | Decay | BR [%] | Unc. [%] | | | bb | 57.7 | 3.3 | | | тт | 6.32 | 5.7 | | | СС | 2.91 | 12.2 | | | μμ | 0.022 | 6.0 | | | ww | 21.5 | 4.3 | | | 99 | 8.57 | 10.2 | | | ZZ | 2.64 | 4.3 | | | YY | 0.23 | 5.0 | | | Ζγ | 0.15 | 9.0 | | | ΓΗ [MeV] | 4.07 | 4.0 | | ^{*} uncertainties need improvements for future precision measurements Warning: Numbers are for 3000 fb⁻¹ expected to be about x(4-5) worse ## Uncertainty on signal strength 100 fb-1 is a factor 1.5 larger! Relative uncertainty on signal rate CMS Projection | Γ | L (fb ⁻¹) | $H \rightarrow \gamma \gamma$ | $H \rightarrow WW$ | $H \rightarrow ZZ$ | $H \rightarrow bb$ | $H \rightarrow \tau \tau$ | $H \rightarrow Z\gamma$ | $H \rightarrow inv.$ | |---|-----------------------|-------------------------------|--------------------|--------------------|--------------------|---------------------------|-------------------------|----------------------| | | 300 | [6, 12] | [6, 11] | [7, 11] | [11, 14] | [8, 14] | [62, 62] | [17, 28] | | | 3000 | [4, 8] | [4, 7] | [4, 7] | [5, 7] | [5, 8] | [20, 24] | [6, 17] | Assumptions on systematic uncertainties Scenario 1: no change Scenario 2: Δ theory / 2, rest $\propto 1/\sqrt{L}$ Based on parametric simulation Extrapolated from 2011/12 results ## Fermion decays - Establish observation (5σ) in fermion modes (ττ / bb) - Some potential for rare decays like H→µµ - Gives direct access to Higgs couplings to fermions of the second generation. - Today's sensitivity: 8xSM cross-section - With 100 fb⁻¹ expect 550 signal events (but: 5/B ~ 0.3%) - Higgs-muon coupling can measured to about >30% ## Higgs (anomalous) Couplings k_i = measured coupling normalized to SM prediction $$\lambda_{ij} = k_i/k_j$$ Expected sensitivity with 100 fb-1 7-25% #### Stop discovery potential - Challenging analysis due to large top background - Systematic uncertainties important - 300 fb⁻¹: - Discovery up to 700 GeV in direct production - Further improvements may be possible with reoptimization ## SBottom discovery potential - Sbottom also supposedly light due to mixing with stop - Discovery with 100 fb-1 for masses up to 500++ GeV - Scenario A: syst. errors as today - Scenario B: syst. errors scaled with 1/JL (but at least 10%) #### Gluino reach if decay via top/bottom With 100 fb-1 will reach about 1.7 TeV in gluino mass both in top- and b-decay signatures ### Generic Squarks and Gluinos 100-200 GeV lower limits at 100 fb⁻¹ Will be extended to 2.1 TeV #### Dilepton resonances: limits - •Current limits are on **σxBR** are ~0.3 fb - Expect to improve by a factor of~40 with HL-LHC - •Probe Z' SSM up to masses of 5.5 TeV | 95% CL limits on: | | | | | | |-----------------------|------------------|-----------------|--|--|--| | | Z'-> ee
(TeV) | Ζ'->μμ
(TeV) | | | | | Run-1 data | 2.79 | 2.48 | | | | | 300 fb ⁻¹ | 6.5 | 6.4 | | | | | 3000 fb ⁻¹ | 7.8 | 7.6 | | | | #### Conclusion - The discovery of a (the?) Higgs boson is a giant leap in our understanding of fundamental physics and the structure and evolution of the universe So far completing SM - As no hint of NP is found Run 2 of the LHC will be marked by precision studies and search for small signals - Depending on the type of NP limits may improve well over 1 TeV compared to current limits - For Supersymmetry limits improve with several 100 GeV