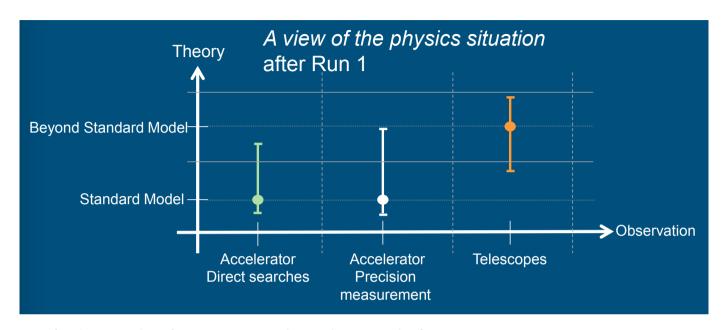

Physics at run 2


The ultimate search engine: LHC

Jorgen Beck Hansen / NBI
On behalf of the LHC experiments

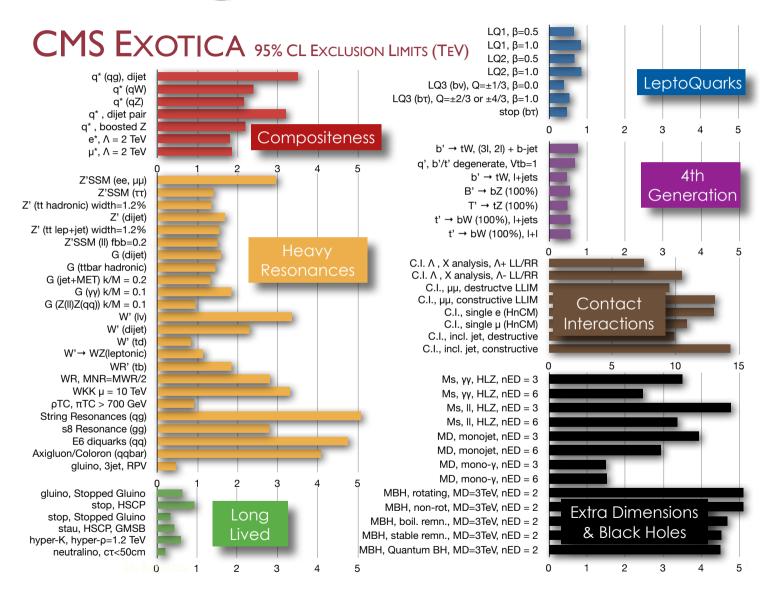
Credits to many colleagues from CMS, ATLAS etc. for the compilation and the many studies as presented in ECFA, Snowmass, RLIUP,...

What Do we know?

- Consolidated the Standard Model
 - Immense set of measurements at 7-8 TeV
 - Precision measurements in EW and QCD
 - Rare processes, very sensitive to New Physics, like $B_s \rightarrow \mu\mu$ decay)
- Completed the Standard Model: Higgs boson discovery
 - ~5 σ from each of H $\rightarrow \gamma\gamma$, H \rightarrow IvIv and H \rightarrow 41 per experiment
 - ~3 σ from H→ττ and ~3 σ from W/ZH→W/Zbb per experiment
 - Potential separation 0+/2+ and pure 0+/0- at 4σ level by combination?
 - Some couplings to 20-30 %

Supersymmetry searches ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS ATLAS

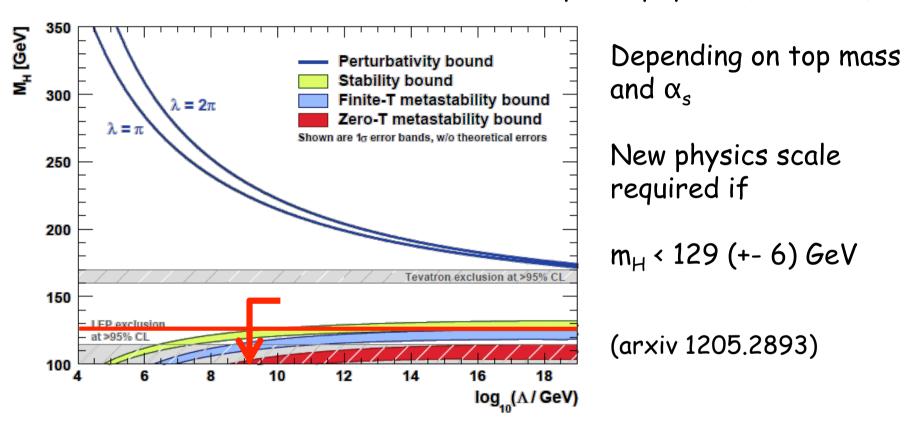
Status: SUSY 2013


ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	E _T ^{miss}	∫£ dt[fb	Mass limit	Reference
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow \tilde{q}\tilde{\chi}^0_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}^0_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}^0_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}^0_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ellr/\nur)\tilde{\chi}^0_1$ GMSB $(\tilde{\ell}, NLSP)$ GGMSB $(\tilde{\ell}, NLSP)$ GGM (bino NLSP) GGM (wino NLSP) GGM (migsino-bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP)	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets 1 <i>b</i> 0-3 jets mono-jet	Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 5.8 10.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-069 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ĝ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , <i>μ</i> 0-1 <i>e</i> , <i>μ</i>	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$\begin{array}{l} \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to t \tilde{\chi}_1^- \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to t \tilde{\chi}_1^- \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to t \tilde{\chi}_1^- \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to b \tilde{\chi}_1^+ \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to b \tilde{\chi}_1^+ \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to b \tilde{b}_1^+ \\ \tilde{b}_2 \tilde{b}_2, \ \tilde{b}_2 \to \tilde{b}_1 + Z \end{array}$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t 1 b 1 b	Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{split} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell} \! \to \! \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+\tilde{\chi}_1^-,\tilde{\chi}_1^+ \! \to \! \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_1^+\tilde{\chi}_1^-,\tilde{\chi}_1^+ \! \to \! \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_1^+\tilde{\chi}_1^-,\tilde{\chi}_1^+ \! \to \! \tilde{\tau}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_1^+\tilde{\chi}_2^0 \! \to \! \ell_1^-\nu\ell_1^-\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_L\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_1^+\tilde{\chi}_2^0 \! \to \! W\tilde{\chi}_1^0Z\tilde{\ell}_0^0 \\ \tilde{\chi}_1^+\tilde{\chi}_2^0 \! \to \! W\tilde{\chi}_1^0Z\tilde{\ell}_0^0 \end{split} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 0 2 <i>b</i>	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+\tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(\tilde{e}, \tilde{\mu}) + \tau($	0	1 jet 1-5 jets - -	Yes Yes - Yes	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \!\!\to \!$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 7 jets - - - 6-7 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ) $\sqrt{s} = 7 \text{ TeV}$	$ \begin{array}{c} 0\\2 e, \mu \text{ (SS)}\\0\end{array} $ $ \sqrt{s} = 8 \text{ TeV} $	4 jets 1 b mono-jet $\sqrt{s} =$	Yes Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 800 GeV M* scale 704 GeV m(χ) <80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	full data p	artial data	full	data		Mass scale [TeV]	

^{*}Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

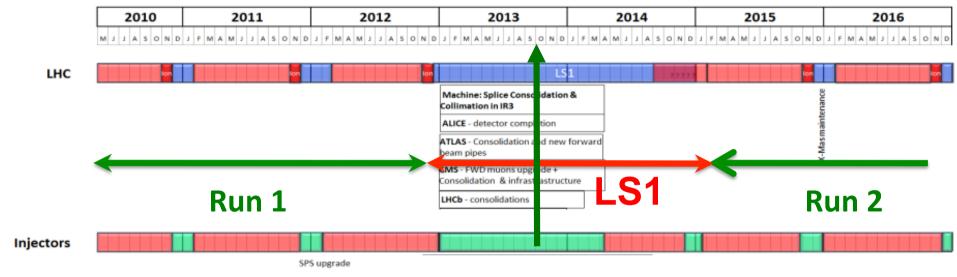

Exotic searches

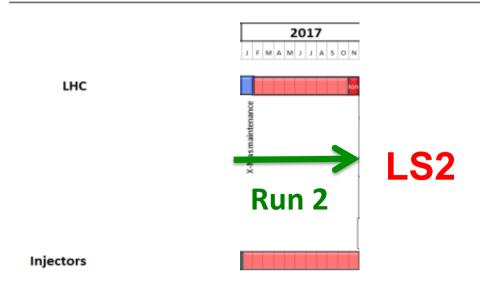
Similar results from ATLAS

The Standard Model is here to STAY!!!

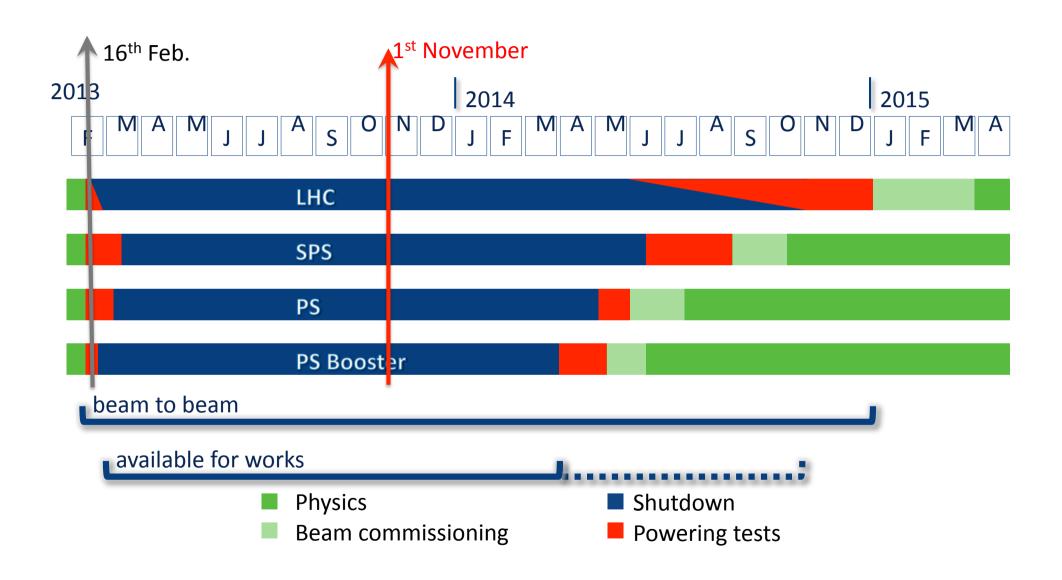
• NO evidence or minute indication of any new physics (~1++ Tev):

- A Higgs mass of ~126 GeV indicates a potential New Physics scale at 9 TeV
 - Optimistic? It could be higher w/o problems
 - Fine tuning requirements points to 2 TeV (10%) increasing to 9 TeV (1%) (arxiv 0003170v1)


Physics landscape by 2015

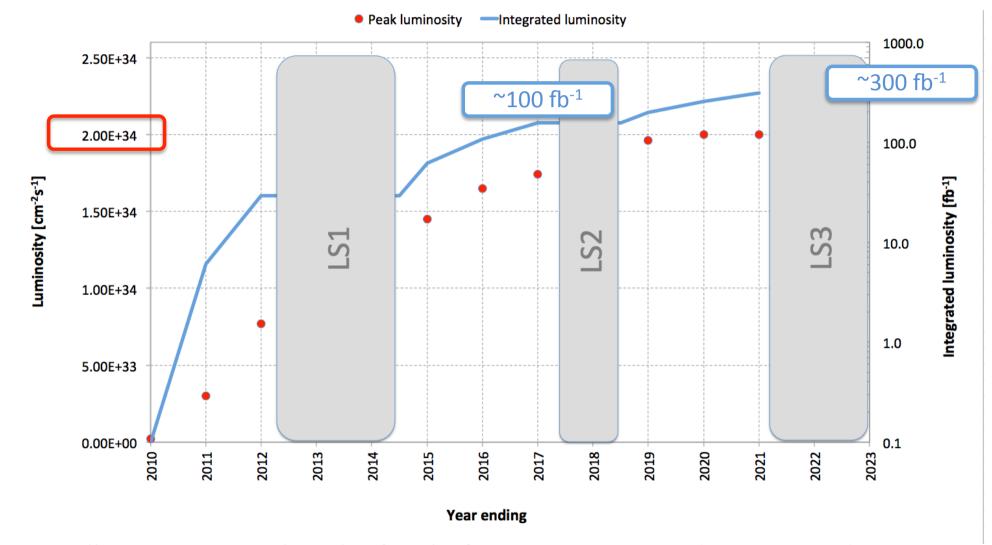

- The Puzzle: The SM is not the ultimate theory of particle physics, because of the many outstanding questions
 - Why is the Higgs boson so light ("naturalness"/fine-tuning/ hierarchy problem)?
 - What is the the nature of the dark part (96%!) of the universe?
 - What is the origin of the matter-antimatter asymmetry?
 - Why is gravity so weak?
- The expected integrated luminosity of RUN 2 implies
 - If New Physics exists at the TeV scale its discovery at √s ~
 14 TeV happens in 2015++ → it requires a lot of luminosity

Run 2 of the LHC will be marked by precision studies and search for small signals


"Prediction is very difficult, especially about the future"

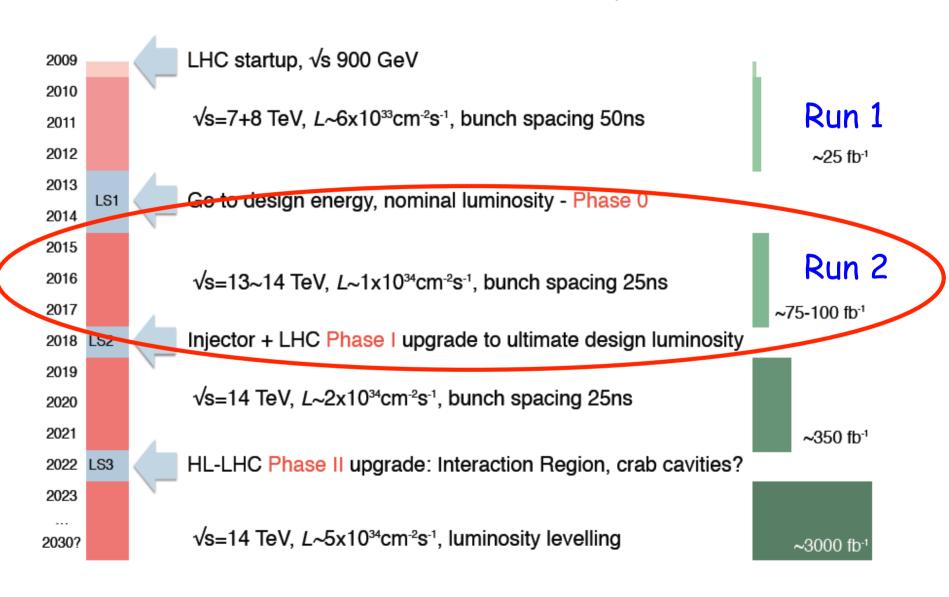
LHC Roadmap Run 2 3 years Operation Run after LS1

LS 1 from 16th Feb. 2013 to Dec. 2014

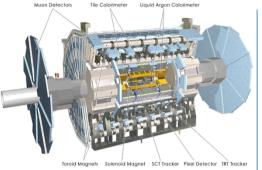

LHC Roadmap Run 2

- Energy: 6.5 TeV
- Bunch spacing: 25 ns
 - pile-up considerations
- Injectors potentially able to offer nominal intensity with even lower emittance

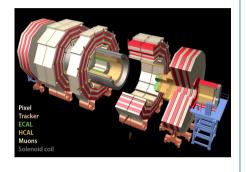
Run 2: Start with 6.5 TeV and later decision towards 7 TeV according to magnet training


	Number of bunches	Ib LHC FT [1e11]	Emit LHC [um]	Peak Lumi [cm- ² s ⁻¹]	~Pile-up	Int. Lumi per year [fb ⁻¹]
25 ns BCMS	2590	1.15	1.9	1.7e34	49	~45

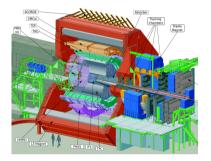
Luminosity evolution


Still uncertainty on length of end-of-year breaks Usual caveats apply

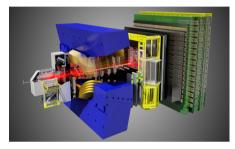
LHC Roadmap



Detector upgrades

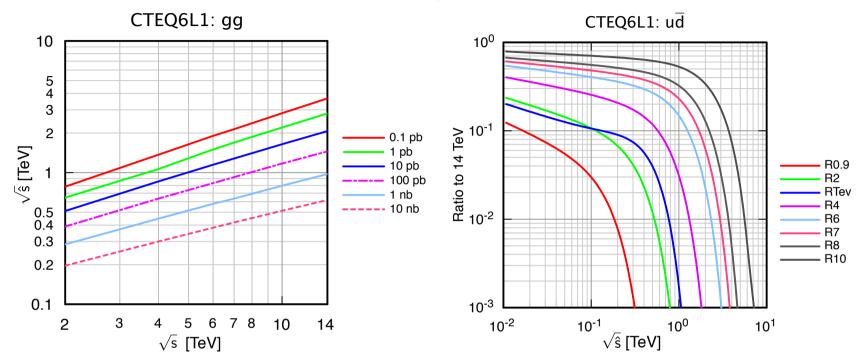

• Detectors will need to be improved to be able to maintain performance at Run 2

- •4th Si Pixel layer (IBL)
- •Complete muon coverage
- •Repairs (TRT, LAr and Tile)
- •New beampipe and Infrastructure updates


- •Complete muon coverage
- Cooler tracker
- Photodetectors in HCAL
- •New beampipe and infrastructure updates

High statistics HI measurements using rare probe particles at low pT.

10nb-1, min bias


Single phase major upgrade to detector & readout in LS2

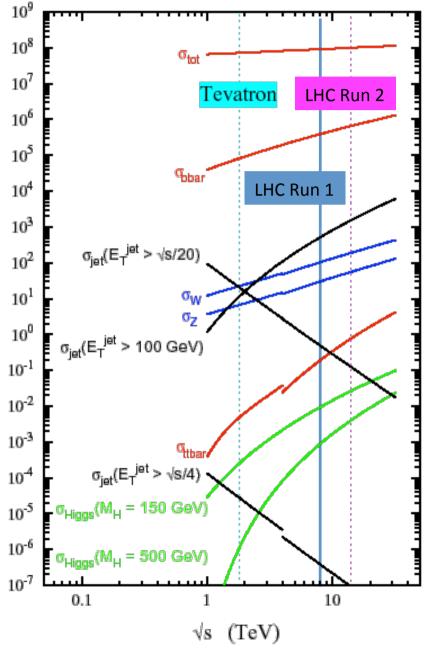
Record very high stats to search for effect of possible new physics on flavour structure. (complementary to ATLAS & CMS progr) 50fb-1, 40Mz readout

Single phase major upgrade to detector & readout in LS2

Parton luminosities

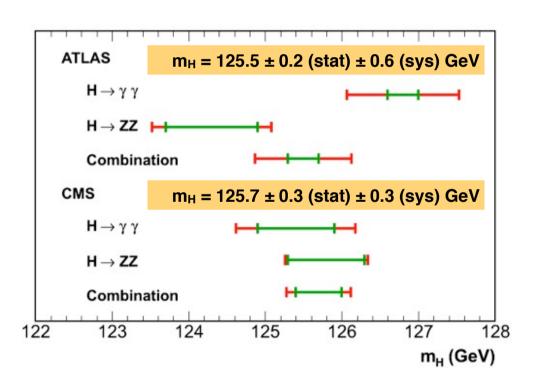
- Looking at these in detail gives excellent idea about relative power of LHC14 vs LHC8, i.e.
 - How much luminosity is needed for process X at LHC14 to supersede the LHC8?
- Rule of thumb: x10 in luminosity $\sim x2$ in energy (process dependent)
- Plots from C. Quigg: LHC Physics Potential versus Energy, arXiv: 1101.3201

Physics prospects at Run 2


- Increase of cross sections from LHC8 to LHC14
 - Improved discovery potential at LHC
- A Higgs factory:

 - 5.5M Higgs events produced 100K event useful for precision measurements
- Note: today ATLAS+CMS have 1400 Higgs events

Physics subjects

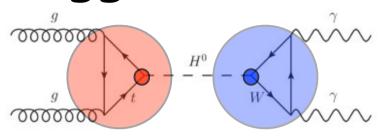

- Higgs precision measurement
 - Mass
 - Cross-sections
- Measure as many Higgs couplings to fermions and bosons as precisely as possible
- Very weak possibility to observe that the Higgs boson fixes the SM problems with $W_{\rm L}W_{\rm L}$ scattering at high E
- Extend limits for searches

CMS and ATLAS white papers: arXiv:1307.7135 and 1307.7292

Higgs Physics Potential - Mass

High resolution channel $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$

ATLAS 115 GeV < m41 < 125 GeV


	total signal	signal	$ZZ^{(*)}$	$Z + jets, t\bar{t}$	S/B	expected	observed
	full mass range						
4μ	6.8 ± 0.8	6.3 ± 0.8	2.8 ± 0.1	0.55 ± 0.15	1.9	9.6 ± 1.0	13
2µ2e	3.4 ± 0.5	3.0 ± 0.4	1.4 ± 0.1	1.56 ± 0.33	1.0	6.0 ± 0.8	5
2e2µ	4.7 ± 0.6	4.0 ± 0.5	2.1 ± 0.1	0.55 ± 0.17	1.5	6.6 ± 0.8	8
4e	32.05	2.6 ± 0.4	1.2 ± 0.1	1.11 ± 0.28	1.1	4.9 ± 0.8	6
total	18.2 ± 2.4	5.9 ± 2.1	7.4 ± 0.4	3.74 ± 0.93	1.4	27.1 ± 3.4	32

CMS 110 GeV $< m_{4l} < 160$ GeV

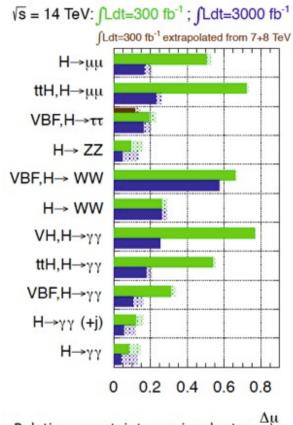
Channel	4e	4μ	2e2µ	4ℓ
ZZ background	6.6 ± 0.8	13.8 ±1.0	18.1 ±1.3	38.5 ±1.8
Z+X	2.5 ± 1.0	1.6 ± 0.6	4.0 ± 1.6	8.1 ±2.0
All background expected	9.1 ± 1.3	15.4 ± 1.2	22.0 ± 2.0	465 + 27
$m_H = 125 \text{ GeV}$	3.5 ± 0.5	6.8 ± 0.8	8.9 ± 1.0	19.2 ±1.4
$m_H = 126 \text{ GeV}$	3.9 ± 0.6	7.4 ± 0.9	9.8 ±1.1	21.1 ±1.0
Observed	16	23	32	71

 Δm of 150(100) MeV achievable for 100(300) fb-1

Higgs Precision measurements

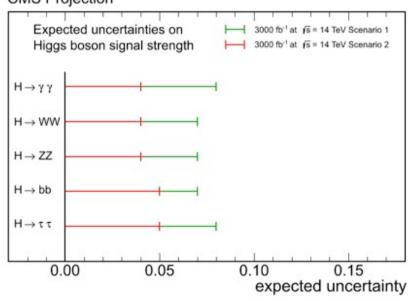
m _н = 125 GeV			
Process	Diagram	Cross section [fb]	Unc. [%]
gluon-gluon fusion	000000	19520	15
vector boson fusion	e WZ H	1578	3
WH	WIT IS WIT	697	4
ZH	abar Z	394	5
ttH	1000000 kap	130	15

m _H = 125 GeV			
Decay	BR [%]	Unc. [%]	
bb	57.7	3.3	
тт	6.32	5.7	
СС	2.91	12.2	
μμ	0.022	6.0	
ww	21.5	4.3	
99	8.57	10.2	
ZZ	2.64	4.3	
YY	0.23	5.0	
Ζγ	0.15	9.0	
ΓΗ [MeV]	4.07	4.0	


^{*} uncertainties need improvements for future precision measurements

Warning: Numbers are for 3000 fb⁻¹ expected to be about x(4-5) worse

Uncertainty on signal strength


100 fb-1 is a factor 1.5 larger!

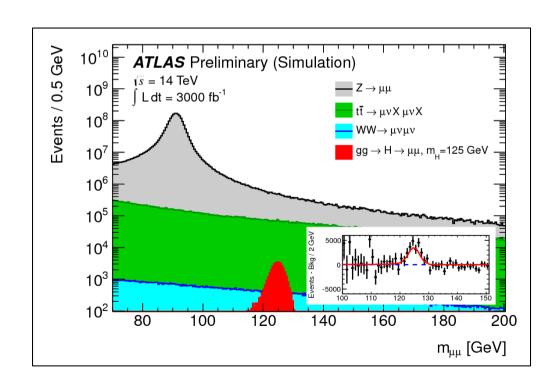
Relative uncertainty on signal rate

CMS Projection

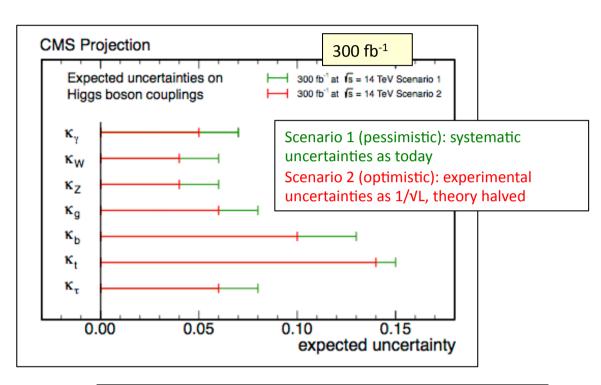
Γ	L (fb ⁻¹)	$H \rightarrow \gamma \gamma$	$H \rightarrow WW$	$H \rightarrow ZZ$	$H \rightarrow bb$	$H \rightarrow \tau \tau$	$H \rightarrow Z\gamma$	$H \rightarrow inv.$
	300	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[17, 28]
	3000	[4, 8]	[4, 7]	[4, 7]	[5, 7]	[5, 8]	[20, 24]	[6, 17]

Assumptions on systematic uncertainties

Scenario 1: no change


Scenario 2: Δ theory / 2, rest $\propto 1/\sqrt{L}$

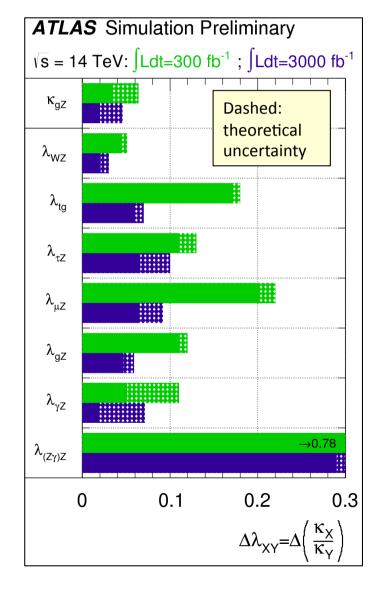
Based on parametric simulation


Extrapolated from 2011/12 results

Fermion decays

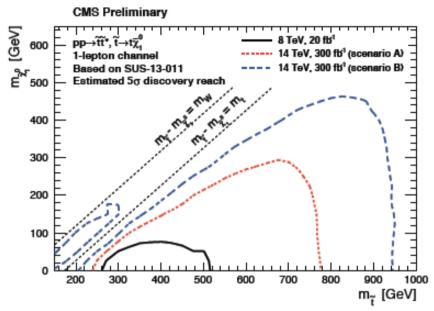
- Establish observation (5σ) in fermion modes (ττ / bb)
- Some potential for rare decays like H→µµ
 - Gives direct access to Higgs couplings to fermions of the second generation.
 - Today's sensitivity: 8xSM cross-section
 - With 100 fb⁻¹
 expect 550 signal
 events (but: 5/B ~ 0.3%)
 - Higgs-muon coupling can measured to about >30%

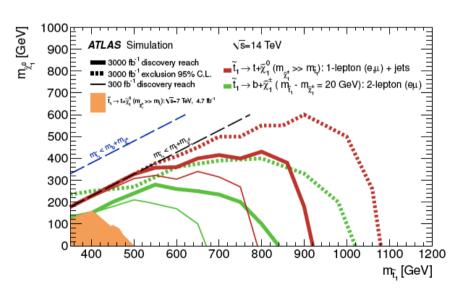
Higgs (anomalous) Couplings

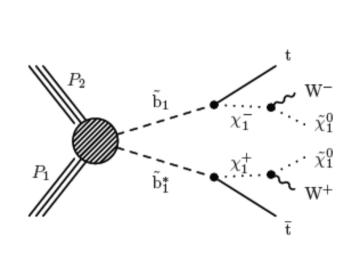


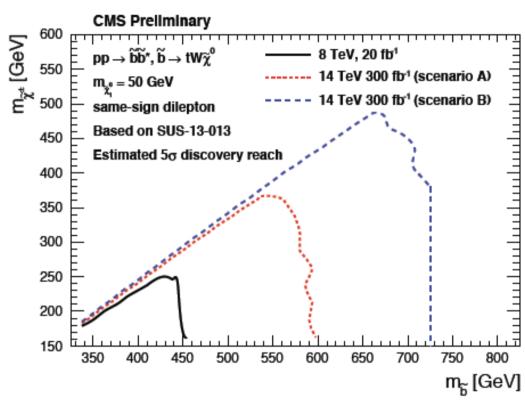
 k_i = measured coupling normalized to SM prediction

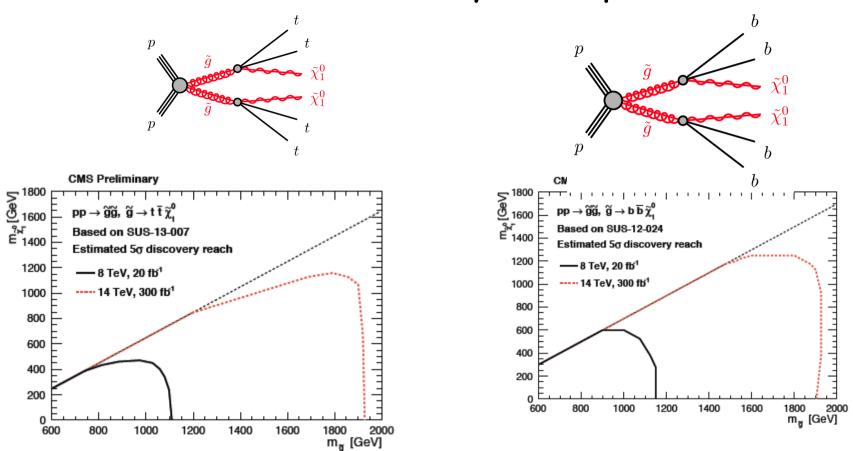
$$\lambda_{ij} = k_i/k_j$$

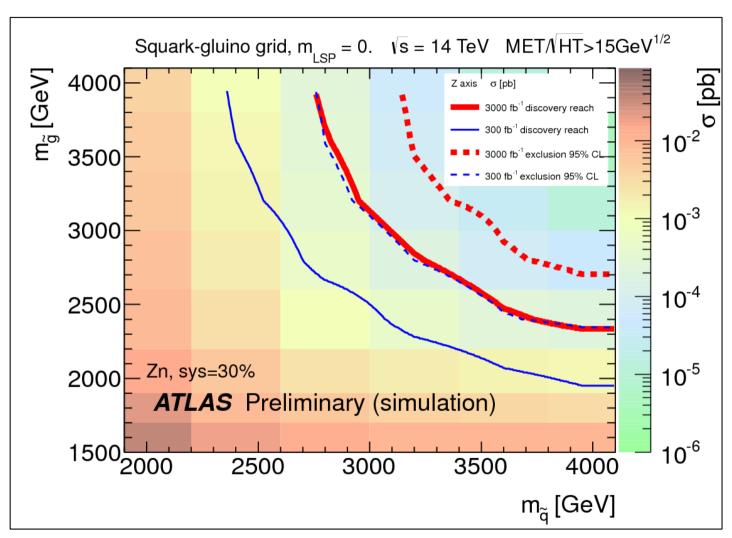

Expected sensitivity with 100 fb-1


7-25%


Stop discovery potential


- Challenging analysis due to large top background
- Systematic uncertainties important
- 300 fb⁻¹:
 - Discovery up to 700
 GeV in direct
 production
- Further improvements may be possible with reoptimization

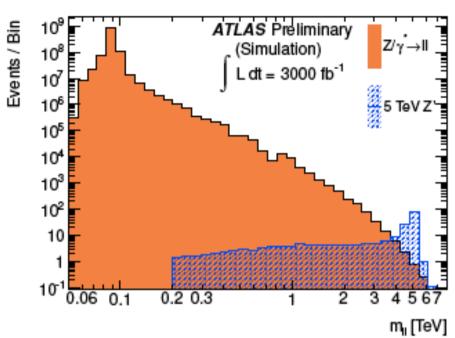

SBottom discovery potential

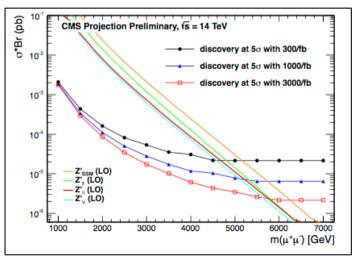

- Sbottom also supposedly light due to mixing with stop
- Discovery with 100 fb-1 for masses up to 500++ GeV
 - Scenario A: syst. errors as today
 - Scenario B: syst. errors scaled with 1/JL (but at least 10%)

Gluino reach if decay via top/bottom

 With 100 fb-1 will reach about 1.7 TeV in gluino mass both in top- and b-decay signatures

Generic Squarks and Gluinos




100-200 GeV lower limits at 100 fb⁻¹ Will be extended to 2.1 TeV

Dilepton resonances: limits

- •Current limits are on **σxBR** are ~0.3 fb
- Expect to improve by a factor of~40 with HL-LHC
- •Probe Z' SSM up to masses of 5.5 TeV

95% CL limits on:					
	Z'-> ee (TeV)	Ζ'->μμ (TeV)			
Run-1 data	2.79	2.48			
300 fb ⁻¹	6.5	6.4			
3000 fb ⁻¹	7.8	7.6			

Conclusion

- The discovery of a (the?) Higgs boson is a giant leap in our understanding of fundamental physics and the structure and evolution of the universe So far completing SM
- As no hint of NP is found

Run 2 of the LHC will be marked by precision studies and search for small signals

- Depending on the type of NP limits may improve well over 1 TeV compared to current limits
- For Supersymmetry limits improve with several 100 GeV