Status of TCLD Collimator Engineering and Design

LHC Collimation Review 2013
31st May 2013

A. Bertarelli (CERN EN-MME)
on behalf of and with input from EN-MME TCLD Team
(M. Timmins, L. Gentini, A. Dallocchio, F. Carra, A. Cherif, D. Ramos, D. Lombard, P. Moyret, N. Mariani, P. Minginette, ...) with contributions from many groups (TE-MSC, EN-STI, BE-ABP, TE-VSC..).
Outline

- DS Collimator Assembly: TCLD and QTC
 - Status of QTC (Cryogenic Bypass) Prototype
- Collimator Module (TCLD)
 - Specification and Present Design
 - Options and Future Outlook
- What’s next ...
- Conclusions
DS Collimator Assembly (LTC)

LTC Main Features (as presented in 2011 Review)

- Collimator Module (TCLD)
- Collimator External Support (fully independent from QTC)
- Cryogenic By-pass (QTC)
- Sector Gate Valves (separate vacuum for QTC and TCLD)

4.5 m between Interconnection Planes
DS Collimator Assembly (LTC)

QTC Main Features (for details see D.D. Ramos talk 2011 QTC Review)

- Heat Exchanger (X-line) going straight through (no bypass)
- N-line auxiliary busbars
- Bypass Tube 2 for M3 busbar
- Bypass tube for M1 and M3 busbars

stay in the “shadow” of the arc cryostat
DS Collimator Assembly (LTC)

QTC Main Features
(for details see D.D. Ramos talk 2011 QTC Review)

- No Splices
- Busbar routing (with Lyras on one side)
- Cold-Warm Transitions (with integrated Vacuum Port)
- Weight: ~2.5 ton

IFS
LHC Collimation Review 2011, report of the review committee

Review committee:

Tiziano Camporesi (CERN), Wolfram Fischer (BNL), Brennan Goddard (CERN), Mike Lamont (CERN), Thomas Markiewicz (SLAC), Nikolai Mokhov (FNAL), Mike Seidel (PSI, chair), Andrzej Siemko (CERN), Johannes Wessels (U. Muenster)

The committee feels nevertheless that the upgrade of collimation in the IR3 and IR7 DS should be carried out in the long term (LS2) as it will allow for increased machine performance. The additional time should be used to complete a proper prototyping of the special cryogenic bypass module. The committee feels that the increased activation of the machine elements in the IR3 and IR7 DS region between LS1 and LS2 should not increase significantly the exposure risks.

- **2011 Collimation Review** recommended the manufacturing of a QTC prototype (without TCLD) and the completion of TCLD design and manufacturing drawing folders.
QTC Prototype

- QTC prototype is almost complete (addition of CWT expected in next weeks ...)
- QTC concept is to get final qualification by cold tests expected in early autumn 2013 in SM18 by TE/MSC (additional tooling required, to be designed and manufactured by EN/MME and TE/MSC ...)

31 May 2013
A. Bertarelli (EN-MME) - 2013 LHC Collimation Review
Outline

- DS Collimator Assembly: TCLD and QTC
- Status of QTC (Cryogenic Bypass) Prototype
- Collimator Module (TCLD)
 - Specification and Present Design
 - Options and Future Outlook
- What’s next ...
- Conclusions
TCLD Layout (as presented in 2011)

Key Features

• 2 jaws on 1 beam
• TCLD fully independent from QTC
• Pre-aligned TCLD Support for rapid positioning
• Horizontal Orientation
• Hydraulic and electrical manual connections
• On-collimator vacuum equipment
TCLD Product Breakdown

- Actuation System
- Vacuum Tank and Jaws
- BPM Cables and PT100 Feedthroughs
Key Features

- Total length: 1200 mm (including 100m tapering)
- Active length: 1000 mm (5 x 200 mm Blocks)
- Cantilevered jaw supporting system
- Continuous cooling circuit
- BPM pickups: 2 per jaw
- Temperature Diagnostics (2 PT100 per jaw)
Key Features

- **Block width:** 20 mm
- **Block height:** 30 mm
- **Block material:** 95%W+3.5%Ni+1.5%Cu (Inermet 180)
- **Vacuum Brazing between support, cooling pipe and stiffener**
- **Water Flow rate:** ≤ 5 L/min (3 m/s)
- **Water Inlet Pressure:** 9÷16 bar
- **Test pressure:** 50 bar

Critical Features

- Inermet/Glidcop contact via A4 St. Steel Screw
- Inermet/Glidcop pressed contact (15 bar)

TCLD Jaw Specification and Design (2/2)

Jaw assembling principles

- Block contained by Glidcop support
- Vacuum Brazing

31 May 2013

A. Bertarelli (EN-MME) - 2013 LHC Collimation Review
TCLD RF System Specification and Design

Key Features
- Contactless RF shielding (Ferrites) with RF Bridge
- Contact Fingers on jaw extremities

Critical Features
- Ferrite-based RF system shared with TCTP/TCSP and Phase II to avoid sliding contacts in UHV (UFO production ...)
- TCLD RF design validated by BE-ABP in 2011: further check necessary?
- Strong shape discontinuity on extremity RF contact fingers may be an issue

31 May 2013
A. Bertarelli (EN-MME) - 2013 LHC Collimation Review
Engineering Department

TCLD Actuation System

Key Features
- 1 D.o.F per jaw (1 motor, no angular adjustment)
- Jaw stroke: 25 mm
- Jaw auto-retraction up to ~170 mNm (no auto-retraction in case of motor short-circuit)
- Phase 1 Stepping Motors and Electronics

Critical Features
- Auto-retraction can be limited by motor detent-torque
- It does not work in case of short-circuited motor
TCLD Actuation System

- All-metal sealed Linear Ball Bearings
- Graphite Dry Film Lubricated (DAG 156)
- Graphite Sealing Ring

Recirculating roller screw was chosen because of its high precision and small lead.

Alternatives now available on the market are being investigated ...

... however, any moving system (particularly in harsh environment) requires regular maintenance.

(tested on Phase 2 Table for 30000 cycles)
Outline

- DS Collimator Assembly: TCLD and QTC
 - Status of QTC (Cryogenic Bypass) Prototype
- Collimator Module (TCLD)
 - Specification and Present Design
- Options and Future Outlook
 - What’s next ...
- Conclusions
Two main options are considered in view of TCLD possible installation, assuming up to 8 TCLD units are required by LS2:

1. **Length of TCLD jaw remains unchanged** (1 m active length, 1.2 total length)

2. **Length of TCLD can and must be reduced** (down to 0.6 m active length?), e.g. to match space allowance permitted by 11 T Dipole design once validated by Physics.

![Diagram of 11 T Dipole and TCLD units](15'660 (IC to IC plane))

```
11T Dipole  TCLD  11T Dipole
```

Notes:
- **TCLD:** Options and Future Outlook
- Two main options are considered...
- **Length of TCLD jaw remains unchanged** (1 m active length, 1.2 total length)
- **Length of TCLD can and must be reduced** (down to 0.6 m active length?), e.g. to match space allowance permitted by 11 T Dipole design once validated by Physics.

Diagram Details:
- **15’660 (IC to IC plane)**
- **11T Dipole**
- **TCLD**
- **11T Dipole**

Date: 31 May 2013

Author: A. Bertarelli (EN-MME) - 2013 LHC Collimation Review
TCLD: Option 1 (1 m jaw length)

- Manufacturing drawing folder exists and needs only limited design work to be completed/validated (mainly on tooling).
- In view of some critical/unknown features in design, it is proposed to build a full TCLD prototype.

Alternatives for production:
- Up to 4 units per year assembled in EN-MME (sub-contracting and in-house fabrication)
- Outsourcing to industry (in the frame of existing contract?)
TCLD: Option 2 (shorter jaw length)

- Present design does not allow to easily shrink jaw length.
- **Substantial redesign required** to reduce jaw length (e.g. to 0.6 m active length ...)
- At least 6 additional months for redesign and drafting. If this is required and allowed by integration, cleaning, physics case, it should be confirmed now!

Alternatives for production:
- Up to 4 units per year assembled in **EN-MME** (sub-contracting and in-house fabrication)
- Outsourcing to **industry** (in the frame of existing contract?).
Outline

- DS Collimator Assembly: TCLD and QTC
 - Status of QTC (Cryogenic Bypass) Prototype
- Collimator Module (TCLD)
 - Specification and Present Design
 - Options and Future Outlook
- What’s next...
- Conclusions
Collimators and their materials for the HL-LHC era (including TCLD) will be submitted to a number of tougher/additional challenges …

- Maintain Phase I **robustness** in spite of increased nominal/accidental loads.
- Reduce Phase I **impedance** ...
- Maintain functionality at **higher operating temperatures** ...
- Increase **radiation hardness** ...
- Tailor **cleaning efficiency** ...
- Maintain/improve **geometrical stability** during CW losses ...

A. Bertarelli (EN-MME) - 2013 LHC Collimation Review
Metal Matrix Composites (MMC) for advanced thermal management materials combine properties of Diamond or Graphite (high k, low ρ and low CTE) with those of Metals (strength, γ, etc.).

Candidate materials include **Copper-Diamond (CuCD)**, **Molybdenum-Copper-Diamond (MoCuCD)**, **Silver-Diamond (AgCD)**, **Molybdenum-Graphite (MoGr)**.
Novel materials for Collimators

<table>
<thead>
<tr>
<th>Material</th>
<th>C-C</th>
<th>Mo</th>
<th>Glidcop ®</th>
<th>Cu-CD</th>
<th>Ag-CD</th>
<th>Mo-Gr all melted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [g/cm³]</td>
<td>1.65</td>
<td>10.22</td>
<td>8.90</td>
<td>~5.4</td>
<td>~6.10</td>
<td>2.8</td>
</tr>
<tr>
<td>Atomic Number (Z)</td>
<td>6</td>
<td>42</td>
<td>29</td>
<td>~11.4</td>
<td>~13.9</td>
<td>8.3</td>
</tr>
<tr>
<td>Tm [°C]</td>
<td>3650</td>
<td>2623</td>
<td>1083</td>
<td>~1083</td>
<td>~840</td>
<td>~2520</td>
</tr>
<tr>
<td>SSNI [kWm2/kg]</td>
<td>24</td>
<td>2.6</td>
<td>2.5</td>
<td>13.1 ÷ 15.3</td>
<td>11.4 ÷ 15.4</td>
<td>83*</td>
</tr>
<tr>
<td>TSNI [kJ/kg]</td>
<td>793</td>
<td>55</td>
<td>35</td>
<td>44 ÷ 51</td>
<td>60 ÷ 92</td>
<td>195*</td>
</tr>
<tr>
<td>Electrical Conductivity [MS/m]</td>
<td>0.14</td>
<td>19.2</td>
<td>53.8</td>
<td>~12.6</td>
<td>~11.8</td>
<td>1 ÷ 18 **</td>
</tr>
</tbody>
</table>

- **Core:** 1 MS/m
- **Carbide layer:** 1.5 MS/m
- **Mo Sheet:** 18 MS/m

Estimated values
with Mo coating

...see N. Mounet’s talk: Mo coating to decrease impedance by a factor 10
Example: Accident on TCTA

Simulation of 8 LHC bunches at 5 TeV impacting a Tungsten Jaw

- Probability of **water leakage** due to very severe plastic deformations on pipes.
- **Impressive jaw damage:**
 - Extended eroded and deformed zones.
 - **Projections** of hot and fast solid tungsten bullets (**T≈2000K, V_{max} ≈ 1 km/s**) towards opposite jaw. Slower particles hit tank covers (at velocities just below ballistic limit).
 - Risk of “bonding” the two jaws due to the projected re-solidified material.

![Real Scale Deformations!!](image)
Recent experiments (HRMT-09 and HRMT-14) have confirmed that a fraction of a 7 TeV bunch is sufficient to permanently damage Tungsten (Inermet 180).

Damage limits at 7 TeV for W jaws presented at MPP Workshop Annecy ‘13:
• Onset of plastic damage: 5×10^9 p
• Limit for jaw fragment ejection: 2×10^{10} p
• Limit for 5th axis compensation (with fragment ejection): 1×10^{11} p
Results of Simulations and Experiments

- Inermet 180, 72 bunches
- Molybdenum, 72 & 144 bunches
- Glidcop, 72 bunches (2 x)
- Copper-Diamond 144 bunches
- Molybdenum-Copper-Diamond 144 bunches
- Molybdenum-Graphite (3 grades) 144 bunches
Outline

- DS Collimator Assembly: TCLD and QTC
 - Status of QTC (Cryogenic Bypass) Prototype
- Collimator Module (TCLD)
 - Specification and Present Design
 - Options and Future Outlook
- What’s next ...
- Conclusions
Summary

- **TCLD design is practically complete** and is based on 1 m Tungsten (Inermet 180) Jaw.

- A number of **critical or unknown design features** suggest the manufacturing of a **full TCLD prototype** (as already done for QTC) **in 2014** to anticipate possible issues.

- If jaw length can and must be reduced (down to 0.6 m), an **additional design/drafting effort** is necessary (6+ months): this request should be raised now.

- Assuming a request for 8 units to be installed during LS2, **production can be carried out in 2016/17** either **in house** (with subcontracting) or outsourced **to industry**.

- Recent experiments have confirmed tungsten can be damaged by a fraction of 1 LHC bunch: if simulations anticipate this risk, an engineering / design effort should be launched asap.
Questions

- What we would like to know:
 - How many cryo-units/IR’s?
 - Which locations?

- What we do need to know:
 - What is the minimum reasonable number of cryo-units necessary to avoid intensity limitations after LS2? (is this compatible with the 11 T program?)
 - Is a “standard dipole” cryo-unit with room for approximately 1 m warm collimator jaws suitable for all locations and all scenarios?
Thank you for your attention!

... additional “entertainment” follows
HRMT14: Experiment Goals and Setup

Benchmark advanced numerical simulations and **material constitutive models** through extensive acquisition system.

- Characterize **existing** and **novel materials** currently under development for Phase II Collimators: Inermet180, Molybdenum, Glidcop, MoCuCD, CuCD, MoGR.

- **Collect**, mostly in real time, **experimental data** from different acquisition devices (Strain Gauges, Laser Doppler Vibrometer, High Speed video Camera, Temperature and Vacuum probes).

Medium Intensity (Type 1 samples):
- Strain measurements on sample outer surface;
- Radial velocity measurements (LDV);
- Temperature measurements;
- Sound measurements.

High Intensity (Type 2 samples):
- Strain measurements on sample outer surface;
- Fast speed camera to capture fragment front formation and propagation;
- Temperature measurements;
- Sound measurements.
HRMT14: Medium Intensity Tests

Extensive numerical analysis (*Autodyn*), based on FLUKA calculations to determine **stress waves, strains and displacements**.

- Comparison of simulated **Hoop and Longitudinal Strains and Radial velocity** with measured values on sample outer surface.

Inermet180
24 b (scraped)

Total intensity: 2.7e12 p
σ ≈ 1.4 mm
HRTM14: High Intensity Tests

Inermet samples as seen from viewport and camera
HRMT14: High Intensity Tests

Inermet: comparison Autodyn (SPH) between simulation and experiment

<table>
<thead>
<tr>
<th>Case</th>
<th>Bunches</th>
<th>p/bunch</th>
<th>Total Intensity</th>
<th>Beam Sigma</th>
<th>Specimen Slot</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td>60</td>
<td>1.5e11</td>
<td>9.0e12 p</td>
<td>2.5 mm</td>
<td>9</td>
<td>316 m/s</td>
</tr>
<tr>
<td>Experiment</td>
<td>72</td>
<td>1.26e11</td>
<td>9.0e12 p</td>
<td>1.9 mm</td>
<td>8 (partly 9)</td>
<td>~275 m/s</td>
</tr>
</tbody>
</table>
TCLD Actuation System

- Components for an Actuation System Set already available
- Actuation system can be cycle-tested with an ad-hoc test bench.
TCLD RF System Specification and Design

TCLD RF Impedance simulations, H. Day (BE-ABP), May 2011

Electromagnetic simulations of the DS Collimator have been carried out giving the impedance and EM field profiles

The impedance is significantly below the design impedance budget of the LHC, indicating that the designs should not contribute to any significant increase in the impedance of the LHC

EM field simulations show that the current impedance reduction techniques (RF clips, tapering, RF fingers) are effective in reducing the geometric impedances by masking cavities and transitions
Assembly Challenges

Cable rooting

4 feedthrough connections on tank cables
Assembly Challenges

Brazed Jaw

Cooling circuit

Tungsten support

Back stiffener
Screwed from behind after brazing

5 Tungsten blocks (20 x 30 x 200)
Assembly Challenges

Seen from the inside

15° slopes

1.6mm gap

50mm (maximum opening)
RF EXTREMITY FINGERS
Horizontal fixed contact
Vertical mobile contact

RF SCREEN CONTACTS
RF SCREEN/TANK CONTACT
TEMP. PROBE CONFIGURATION

4 Temperature probes (1 at each jaw extremity)